

First-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of <u>Yes-Associated Protein (YAP)/Transcriptional Enhancer</u> <u>Activator Domain (TEAD), in patients with advanced solid tumors</u> enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations

<u>**Timothy A. Yap**</u>¹, David J. Kwiatkowski², Jayesh Desai³, Ibiayi Dagogo-Jack⁴, Michael Millward⁵, Hedy Kindler⁶, Anthony W. Tolcher⁷, Sophia Frentzas⁸, Archie Thurston⁹, Len Post¹⁰, F. Andrew Dorr¹⁰

¹University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Brigham and Women's Hospital, Boston, MA, USA; ³Peter MacCallum Cancer Centre, Melbourne, AU; ⁴Massachusetts General Hospital Cancer Center, Boston, MA, USA; ⁵Linear Cancer Trials, Queen Elizabeth II Medical Centre, Perth, WA, AU; ⁶University of Chicago, Chicago, IL, USA; ⁷NEXT Oncology, San Antonio, TX, USA; ⁸Monash Medial Centre, Clayton, VIC, AU; ⁹Toxicology Solutions, Marana, AZ, USA; ¹⁰Vivace Therapeutics, San Mateo, CA, USA

Disclosure Information

Timothy A. Yap

I have the following financial relationships to disclose:

- Employment: University of Texas MD Anderson Cancer Center; where I am Medical Director of the Institute for Applied Cancer Science, which has a commercial interest in DNA damage response (DDR) and other inhibitors (IACS30380/ ART0380 was licensed to Artios)
- Grant/Research support (to the Institution): Acrivon, Artios, AstraZeneca, Bayer, Beigene, BioNTech, Blueprint, BMS, Boundless bio, Clovis, Constellation, Cyteir, Eli Lilly, EMD Serono, Forbius, F-Star, GlaxoSmithKline, Genentech, Haihe, Ideaya ImmuneSensor, Ionis, Ipsen, Jounce, Karyopharm, KSQ, Kyowa, Merck, Mirati, Novartis, Pfizer, Ribon Therapeutics, Regeneron, Repare, Rubius, Sanofi, Scholar Rock, Seattle Genetics, Tesaro, Vivace and Zenith.
- Consultant for: AbbVie, AstraZeneca, Acrivon, Adagene, Almac, Aduro, Amphista, Artios, Athena, Atrin, Avoro, Axiom, Baptist Health Systems, Bayer, Beigene, Blueprint Medicines, Boxer, Bristol Myers Squibb, C4 Therapeutics, Calithera, Cancer Research UK, Circle Pharma, Clovis, CUHK Committee, Cybrexa, Dark Blue Therapeutics, Diffusion, Ellipses.Life, EMD Serono, F-Star, Genentech, Genmab, Gerson and Lehrman Group, Glenmark, GLG, Globe Life Sciences, GSK, Guidepoint, Idience, Ignyta, I-Mab, ImmuneSensor, Institut Gustave Roussy, Intellisphere, Jansen, Kyn, LRG1, MEI pharma, Mereo, Merck, Natera, Nexys, Novocure, OHSU, OncoSec, Ono Pharma, Panangium, Pegascy, PER, Pfizer, Piper-Sandler, Pliant Therapeutics, Prolynx, Radiopharm Theranostics, Repare, resTORbio, Roche, Sanofi, Schrodinger, Seagen, Synthis Therapeutics, Terremoto Biosciences, Tessellate Bio, TD2 Theragnostics, Tome Biosciences, Varian, Versant, Vibliome, Xinthera, Zai Labs, Zentalis and ZielBio
- Stockholder in: Seagen

Hippo - YAP Pathway

Figure adapted from Ma et al., Annu Rev Biochem, 2019

1. Creaney et al., Genome Med, 2022

- Hippo signaling regulates transcription factors YAP and TAZ in response to diverse upstream signals.
- When translocated to nucleus, YAP/TAZ interact with DNA-binding TEAD proteins, activating transcription of target genes.
- Dysfunction of Hippo pathway in tumors promotes activation of YAP/TAZ, resulting in uncontrolled proliferation and impaired differentiation.
- NF2 mutations are one mechanism by which Hippo control of YAP/TAZ is inactivated in tumors and are common in mesothelioma¹.

VT3989 inhibits TEAD-YAP

VT3989 occupies the palmitate pocket, inhibiting palmitoylation, and thereby inhibiting transcription function of TEAD-YAP

- mesothelioma lines with and without detected NF2 mutations.
- Active in NF2 deficient mesothelioma xenografts at 3 mg/kg QD oral dosing¹.

VT039

100

80

60

40

20

First-in-class First-in-human Phase 1 study of VT3989 in patients with advanced solid tumors

APRIL 14-19 • #AACR23

23010264

*Eligibility used UPCR \leq 0.5 mg/mg initially; later updated to UACR \leq 100 mg/gm

Baseline Patient Characteristics Part 1, Cohorts 1-12

hemangioendothelioma; MPNST: Malignant Peripheral Nerve

Sheath Tumor

Characteristic	(n=69)	Characteristic	(n=69)	
Age Median age in years (range) Gender Female (%) Male (%)	63.5 (21-83) 34 (49) 35 (51)	Tumor Types Pleural Mesothelioma Peritoneal Mesothelioma Dual Pleural & Peritoneal Mesothelioma Pericardial Mesothelioma	33 (48) 8 (12) 1 (1) 1 (1)	 Non-mesothelioma solid tumors included: Meningioma (9: 4 gNF2m, 4 sNF2m and 1 NF2m not detected); sNF2m Sarcoma (4); sNF2m Carcinoma of Unknown Primary; possibly mesothelioma of tunica vaginalis (1);
Race White (%) Black (%) American Indian (%) Other (%) Ethnicity Hispanic (%)	60 (87) 2 (3) 1 (1) 6 (9) 7 (10.1)	Meningioma Other Solid Tumor Molecular Profile <i>NF2</i> Mutations Somatic Germline <i>NF2</i> Wildtype Unknown	9 (13) 17 (23) 37 31 6 13 19	 sNF2m Serous Fallopian Tube Carcinoma (1); sNF2m Nasopharyngeal Cancer (1); sNF2m Papillary Renal Cell Cancer (1); sNF2m NSCLC; EHE (2); Biliary (1); Colon (1); gNF2m MPNST (1); gNF2m Schwannoma (1)
ECOG Performance Status 0 (%) 1 (%)11 (16) 58 (84)ECOG: Eastern Cooperative Oncology Group; CPI: Immune Checkpoint Inhibitor; VEGF: Vascular Endothelial Growth Factor; NSCLC: Non-small cell lung cancer; EHE: Epithelioid		Prior Therapy Median (Range) Prior chemotherapy (%) Prior CPI (%) Prior anti-VEGF inhibitor (%)	3 (0-8) 54 (78) 39 (57) 21 (30)	

VT3989 tested at continuous and intermittent dosing schedules

200 mg 2 weeks on/ 1 week off	6 pts – 0 DLT Cohort 6	
200 mg 1 week on/ 2 weeks off	6 pts – 0 DLT Cohort 7	
200 mg 2 weeks on/ 2 weeks off	5 pts – 0 DLT Cohort 8	
100 mg 2 weeks on/ 2 weeks off	7 pts – 0 DLT Cohort 9	Dose escalation up to
150 mg 1 week on/ 3 weeks off	6 pts – 0 DLT Cohort 10	200mg QD continuously.
100 mg 15 days continuous, then weekly (D1, D8, D15)	6 pts – 0 DLT Cohort 11	Pre-clinical studies demonstrated comparable antitumor activity with
50 mg 15 days continuous, then weekly (D1, D8, D15)	6 pts – 0 DLT Cohort 12	continuous and
200 mg QD continuous	4 pts – 0 DLT Cohort 5	Various intermittent
150 mg QD continuous	► 6 pts – 0 DLT Cohort 4	dosing schedules were subsequently evaluated.
100 mg QD continuous	6 pts – 0 DLT Cohort 3	
50 mg QD continuous	6 pts – 0 DLT Cohort 2	
25 mg QD continuous	5 pts – 0 DLT Cohort 1	

AACR American Association for Cancer Research

VT3989 Safety Profile

Related Adverse Events \geq 5 patients, worst grade by patient (N=69)

APRIL 14-19 • #AACR23

2301026A

	CTCAE Grade*				Tetol	
Adverse Event	1 n (%)	2 n (%)	3 n (%)	4 n (%)	Total n (%)	
Albuminuria	11 (15.9)	23 (33.3)	3 (4.3)	0	37 (53.5)	
Peripheral edema	20 (29)	4 (5.8)	1 (1.4)	0	25 (36.2)	
Fatigue	9 (13)	7 (10.1)	1 (1.4)	0	17 (24.6)	
Nausea	13 (18.8)	1 (1.4)	0	0	14 (20.3)	
Increased ALT	6 (8.7)	1 (1.4)	1 (1.4)	0	8 (11.6)	No dose-limiting
Increased AST	5 (7.2)	2 (2.9)	1 (1.4)	0	8 (11.6)	toxicities observed
Increased cholesterol	4 (5.8)	1 (1.4)	0	0	5 (7.2)	
Anorexia	5 (7.2)	0	0	0	5 (7.2)	
Hyperlipidemia	3 (4.3)	2 (2.9)	0	0	5 (7.2)	
Periorbital edema	4 (5.8)	1 (1,4)	0	0	5 (7.2)	*No grade 5 AEs were observed

• Albuminuria is not graded by CTCAE; in this table, G1 albuminuria is defined as UACR >100-300, G2 >300-2200 and G3 >2200

 A possibly-related G4 event of cardiomyopathy was observed in a 82y male with advanced pleural mesothelioma and known coronary artery disease, hypertension, aortic regurgitation and mild renal dysfunction. Patient received150mg VT3989 QD for 7 months (11 cycles), when a symptom-driven cardiac evaluation led to a diagnosis of G4 dilated cardiomyopathy with no clear etiology

VT3989 Reversible albuminuria

UACR mg/gm (n = 69)	Cohorts 1-8, 10 25-200 mg/day continuously or 150-200mg on 4 intermittent dosing schedules (n = 50)	Cohorts 9, 11, 12 50-100 mg on 2 intermittent dosing schedules (n = 19)
Median	341.9 mg/gm	60.4 mg/gm
(min, max)	(17, 2715.4)	(7.55, 431.2)
Mean	649.9 mg/gm	89.7 mg/gm
(SD)	(744.9)	(111.4)

- Preclinical toxicology in rats and monkeys demonstrated dose-related, reversible proteinuria. Electron microscopy showed effacement of podocytes, which is believed to be target-related.
- Albuminuria and proteinuria have not been associated with significant clinical symptoms or changes in serum creatinine, creatinine clearance, or serum albumin.
- VT3989 given at doses ≤100 mg on intermittent schedules results in less frequent and less severe albuminuria, which is reversible with dose reduction or interruption.
- Albuminuria and proteinuria have been reversible in patients treated at all doses and schedules.

VT3989 Pharmacokinetics Continuous Daily Dosing

- VT3989 gives dose proportional exposure following oral administration
- VT3989 half-life is long, ~12-15 days
- PK exposure on day 15 is ~7x that on day 1

RECIST v1.1 Anti-Tumor Activity

RECIST v1.1 NF2 % Change in **Treatment Duration** Initial Dose (mg/day) & Schedule **Tumor Type Target Lesions** Mutation Response (months) Dual Pleural/ 200mg 2 weeks on, cPR 12+ No mutation -81% 2 weeks off **Peritoneal Meso** 50mg x 15 days, **Peritoneal Meso** Unknown cPR -55% 6.5+ then once weekly 50mg continuously Pericardial Meso s*NF2*m cPR -47% 7.4 50mg continuously Peritoneal Meso No Mutation cPR -39% 7.6 100mg continuously Peritoneal Meso No Mutation cPR -39% 21+ 200mg continuously sNF2m -35% Sarcoma cPR 8 150mg continuously **Peritoneal Meso** sNF2m uPR -30% 6.1 7.4 100mg continuously **Nasopharyngeal** sNF2m SD -24% 150 for 1 week on, EHE Unknown SD -22% 9.5+ 3 weeks off

sNF2m: Somatic NF2 mutation; cPR: confirmed partial response; uPR: unconfirmed PR; SD: stable disease

Duration of treatment

Antitumor activity by tumor type

2301026A

Antitumor activity by NF2 mutation

2301026

ANNUAL

0.23

C-R

Preliminary antitumor activity case study 1 Subject 102-1022

22 y/o female with advanced Dual Pleural/Peritoneal Mesothelioma Without NF2 mutation

VT3989 25 mg PO QD, 2 weeks on/2 weeks off; 28-day cycle

Prior therapies

- Cisplatin + Pemetrexed + Bevacizumab _
- Pemetrexed + Bevacizumab maintenance
- Ipilimumab + Nivolumab
- PIM kinase inhibitor TP-3654

RECIST sustained PR (–81.3%) On treatment for 12+ months

Baseline 16 mm

> C14D1 3 mm

Preliminary antitumor activity case study 2 Subject 102-1007

VT3989 50 mg PO QD; 21-day cycle

Prior therapies

- Cisplatin + Pemetrexed
- Pembrolizumab
- Carboplatin + Pemetrexed
- Pemetrexed maintenance
- Ipilimumab + Nivolumab

RECIST sustained PR (–38.7%) On treatment for 21+ months Baseline 163 mm

C22D1

100 mm

Preliminary antitumor activity case study 3 Subject 102-1012

55 y/o female with advanced high grade spindle cell sarcoma with somatic *NF2* mutation

VT3989 150 mg PO QD, 2 weeks on/1 week off; 21-day cycle

Prior therapies

- Mesna + Adriamycin + Ifosfamide + Dacarbazine
- Mesna + Cytoxan + Vincristine + Actinomycin
- Ifosfamide
- Pazopanib
- Tazemetostat

RECIST confirmed PR (–34.8%) On treatment for 8 months Baseline 69 mm

> **C10D1** 45 mm

- VT3989 is safe and well tolerated.
- Durable anti-tumor activity observed in patients with advanced mesothelioma with or without *NF2* mutations and in other solid tumors with *NF2* mutations.
- Albuminuria is reversible with dose interruption/reduction and avoidable with doses 50-100 mg on intermittent schedules while maintaining anti-tumor activity.
- VT3989 demonstrated dose proportional PK exposures and a long half-life
- These data provide the first early clinical proof-of-concept for effectively drugging the Hippo-YAP-TEAD pathway.
- Dose optimization expansion cohorts are currently evaluating different doses/schedules in 2-stage designs

Acknowledgements

ALL PATIENTS AND THEIR CAREGIVERS

Study teams

MDACC: Lindsay Wilson, Carolina Salguero, Christian V. Brown, Marta Tesfamariam, Liezl Cuenca, Samantha Billot
DFCI: Justine Olegario, Alyssa Brooke Lambert, Molly O. Sullivan, RN
Peter MacCullum Cancer Centre: Karmina Pablo
MGH: Susan Symes
U Chicago: Andrew McGettigan, Gairta Porroga, RN
Monash Medical Centre: Amy Louise Body BMedSc, MBBS, Penny Macguire
NEXT Oncology and Linear Clinical Trials Centre

Sponsor & Contract Research Organization

Vivace: Tracy Tang, PhD, Debra Vallner, PhD, Jill Abbey, MBA, Johanna Wagstaff

InClin: Heather Fritz, BSN, Sonia Minassian, DrPH, Gary Moore, MS, Shubham Sambhare, Chris Bornhauser, Richard Read Allen, MS, Emma Bennett, MHSC, Glenn Michaelson, MD, Renee Ward, MD, PhD, Tara Weihmiller

Wank you!

