
Safety and efficacy of first-in-class, YAP/TEAD inhibitor, VT3989 in refractory pleural and non-pleural mesothelioma: A Phase I/II study

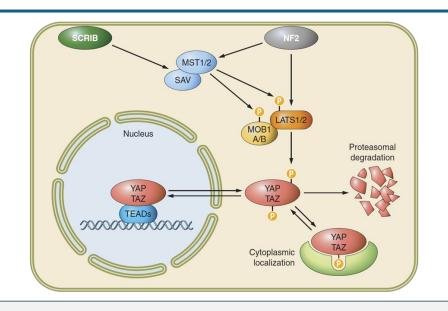
Timothy A. Yap¹, Michael Offin², David J. Kwiatkowski³, Robert Kratzke⁴, Ibiayi Dagogo-Jack⁵, Anthony W. Tolcher⁶, Jayesh Desai⁷, Amy Body⁸, Michael Millward⁹, Neelesh Sharma¹⁰, Tracy Tang¹⁰, Yufeng Li¹⁰, Hedy Kindler¹¹

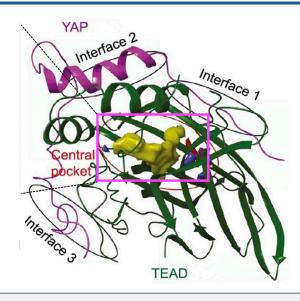
¹Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America, ²Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America, ³MedicalOncology, The Lowe Center for Thoracic Oncology at Dana-Farber Cancer Institute, Boston, United States of America, ⁴Medical Oncology, University of Minnesota, Minneapolis, MN, United States of America, ⁵Internal Medicine - Department of Medical Oncology, MGH - Massachusetts General Hospital, Boston, United States of America, ⁶Clinical Research Director, NEXT OncologyTM, San Antonio, TX, United States of America, ⁷Medical Oncology Dept., Peter MacCallum Cancer Centre, Melbourne, Australia, ⁸Department of Oncology, Monash Medical Centre, Monash Health, Clayton, Australia, ⁹School of Medicine, Linear Clinical Research, Crawley, Australia, ¹⁰R&D, Vivace Therapeutics, San Mateo, CA, United States of America, ¹¹Department of Medicine - Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, United States of America

Timothy A. Yap, MD, PhD

Berlin, Germany, 19-October-2025

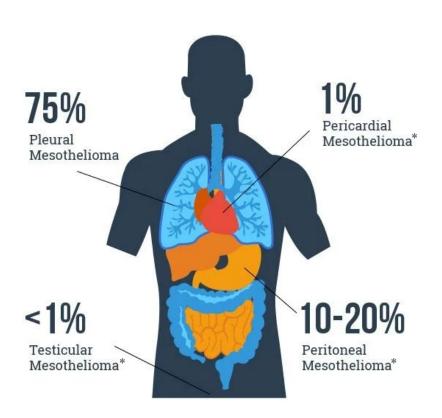
Declaration of Interests


Timothy A. Yap, MD, PhD


Disclosures:

- **Employment:** University of Texas MD Anderson Cancer Center; where I am Vice President, Head of Clinical Development in the Therapeutics Discovery Division, which has a commercial interest in DNA damage response (DDR) and other inhibitors (IACS30380/ ART0380 was licensed to Artios)
- Grant/Research support (to the Institution): Acrivon, Artios, AstraZeneca, Bayer, BeiGene, BioNTech, Blueprint, Bristol Myers Squibb, Boundless Bio, Clovis, Constellation, Cyteir, Eli Lilly, EMD Serono, Forbius, F-Star, GlaxoSmithKline, Genentech, Haihe, Ideaya ImmuneSensor, Insilico Medicine, Ionis, Ipsen, Jounce, Karyopharm, KSQ, Kyowa, Merck, Mirati, Novartis, Pfizer, Ribon Therapeutics, Regeneron, Repare, Rubius, Sanofi, Scholar Rock, Seattle Genetics, Tango, Tesaro, Vivace, and Zenith.
 - He is supported by the NCI Cancer Center Support Grant CA016672 to The University of Texas MD Anderson Cancer Center, Department of Defense grants W81XWH2210504_BC211174 and W81XWH-21-1-0282_OC200482, V Foundation Scholar Grant VC2020-001, and NIH R01 grant 1R01CA255074.
- Consultant for: AbbVie, Acrivon, Adagene, Almac, Aduro, Amphista, Artios, Astex, AstraZeneca, Athena, Atrin, Avenzo, Avoro, Axiom, Baptist Health Systems, Bayer, BeiGene, BioCity Pharma, Blueprint, Boxer, Bristol Myers Squibb, C4 Therapeutics, Calithera, Cancer Research UK, Carrick Therapeutics, Circle Pharma, Clovis, Cybrexa, Daiichi Sankyo, Dark Blue Therapeutics, Diffusion, Duke Street Bio, 858 Therapeutics, EcoR1 Capital, Ellipses Pharma, EMD Serono, Entos, F-Star, Genesis Therapeutics, Genmab, Glenmark, GLG, Globe Life Sciences, GSK, Guidepoint, Ideaya Biosciences, Idience, Ignyta, I-Mab, ImmuneSensor, Impact Therapeutics, Institut Gustave Roussy, Intellisphere, Jansen, Kyn, MEI pharma, Mereo, Merck, Merit, Monte Rosa Therapeutics, Natera, Nested Therapeutics, Nexys, Nimbus, Novocure, Odyssey, OHSU, OncoSec, Ono Pharma, Onxeo, PanAngium Therapeutics, Pegascy, PER, Pfizer, Piper-Sandler, Pliant Therapeutics, Prolynx, Radiopharma Theranostics, Repare, resTORbio, Roche, Ryvu Therapeutics, SAKK, Sanofi, Schrodinger, Servier, Synnovation, Synthis Therapeutics, Tango, TCG Crossover, TD2, Terremoto Biosciences, Tessellate Bio, Theragnostics, Terns Pharmaceuticals, Tolremo, Tome, Thryv Therapeutics, Trevarx Biomedical, Varian, Veeva, Versant, Vibliome, Voronoi Inc, Xinthera, Zai Labs, and ZielBio.

VT3989: First-In-Class TEAD inhibitor

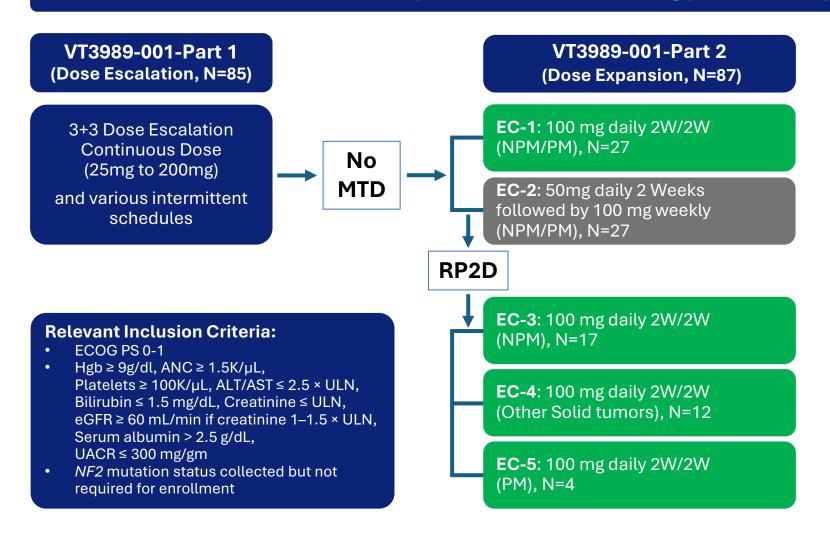


- Hippo signaling inhibits YAP and TAZ by blocking nuclear translocation and interaction with TEAD in the nucleus
- NF2 Mutation or loss of Merlin (gene product of NF2) leads to Hippo dysregulation
 - Common in mesothelioma (~70%); molecular patient selection is not required
- VT3989 is a small molecule auto-palmitoylation inhibitor of TEAD
 - Palmitoylation of a conserved cysteine in the YAP-binding domain is required for YAP-TEAD interaction
 - VT3989 occupies the palmitate pocket blocking the YAP-TEAD interaction and inhibiting transcriptional activity

Unmet Need for Targeted Mesothelioma Therapies

*NPM: Non-pleural mesothelioma

5-year survival:


- 10% for pleural mesothelioma (PM)
- 20% for peritoneal mesothelioma
- Median OS in PM after 2L therapy is only 6-8 months
- No targeted treatments approved
- Limited systemic treatment options
 - Platinum/Pemetrexed, or Ipilimumab/Nivolumab, or Pembrolizumab/Platinum/Pemetrexed
 - Most commonly used chemo for 3rd line (Vinorelbine or Gemcitabine) is IV – poor activity with significant toxicity

VT3989-001:

Ph1/2 Study of VT3989 in patients with advanced solid tumors (NCT04665206)

Advanced refractory solid tumors, including pleural/non-pleural mesothelioma

Primary Endpoints:

- Safety and Tolerability
- Maximum Tolerated Dose (MTD) & Recommended Phase 2 Dose (RP2D)

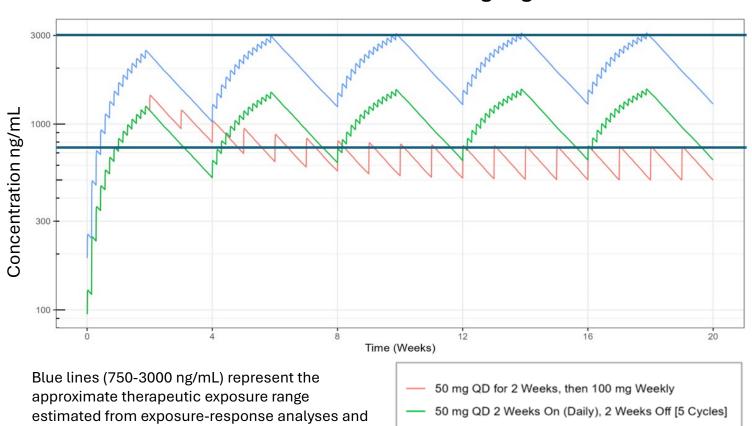
Secondary Endpoints:

- Antitumor activity
- Pharmacokinetics
- Time to response
- Time match PK and ECG

Exploratory Endpoints:

- Hippo-YAP signaling in sequential tumor biopsies
- ctDNA changes
- YAP and Merlin expression by IHC

Data as of 20-March-2025



VT3989 Dosing and Exposure Modeling

100 mg QD 2 Weeks on/2 Weeks off (100 mg QD 2W/2W) selected as RP2D

- VT3989 half life: ~ 9 Days
- Intermittent dosing at 100 mg QD 2W/2W provides optimal therapeutic exposure
- 100 and 50 mg QD 2W/2W dose regimens demonstrated clinically meaningful activity
 - 50 mg QD 2W/2W serves as a dose reduction option

Simulated Plasma Concentration – Time Profiles for VT3989 under three Intermittent Dosing Regimens

associated with anti-tumor efficacy.

100 mg QD 2 Weeks On (Daily), 2 Weeks Off [5 Cycles]

Baseline Demographics and Characteristics

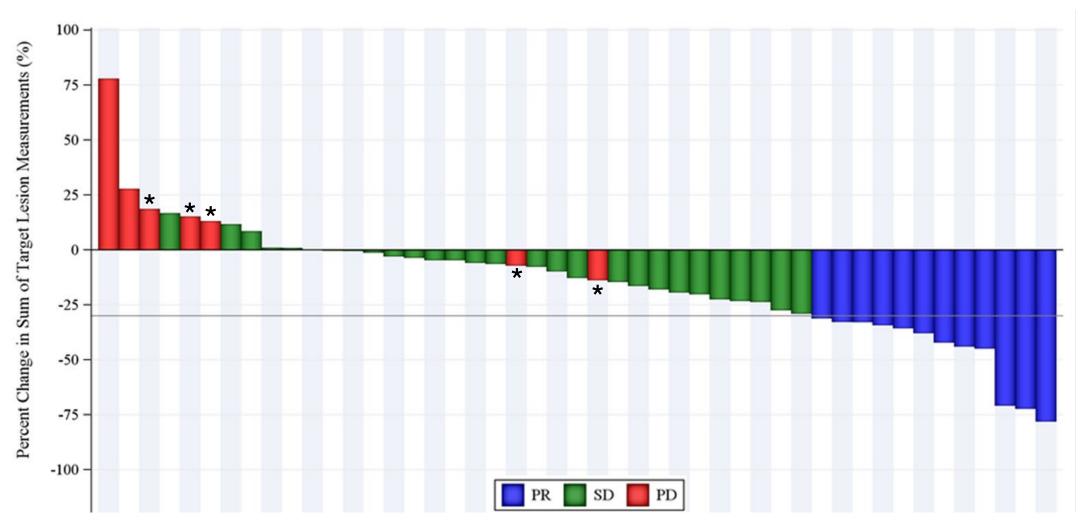
Characteristics	(N=172)
Age Median age in years (range)	65.0 (21–88)
Gender Female (%) Male (%)	66 (38.4) 106 (61.6)
Race White (%) Black (%) Asian (%) American Indian (%) Other (%) Ethnicity Hispanic (%)	144 (83.7) 8 (4.7) 3 (1.7) 1 (0.6) 16 (9.3)
ECOG Performance Status 0 (%) 1 (%)	36 (20.9) 136 (79.1)

Characteristics	(N=172)
Tumor Types, n (%) Mesothelioma - Pleural Epithelioid Sarcomatoid* Mesothelioma – Non-Pleural Epithelioid Sarcomatoid* Other Solid Tumors EHE Meningioma Other	91 (52.9) 77 (44.8) 14 (8.1) 44 (25.6) 44 (25.6) 0 (0.0) 37 (21.5) 9 (5.2) 9 (5.2) 19 (11.0)
Molecular Profile, n (%) NF2 Mutation NF2 Mutation Undetected Unknown or Not Performed	54 (31.4) 42 (24.4) 76 (44.2)
Prior Therapy Median (Range) Prior Systemic Therapy (%) Prior Platinum Therapy (%) Prior Immunotherapy (%)	3 (0–8) 138 (80.2) 125 (72.7) 123 (71.5)

^{*}includes biphasics: ≥50% sarcomatoid component

VT3989 is Safe and Well tolerated

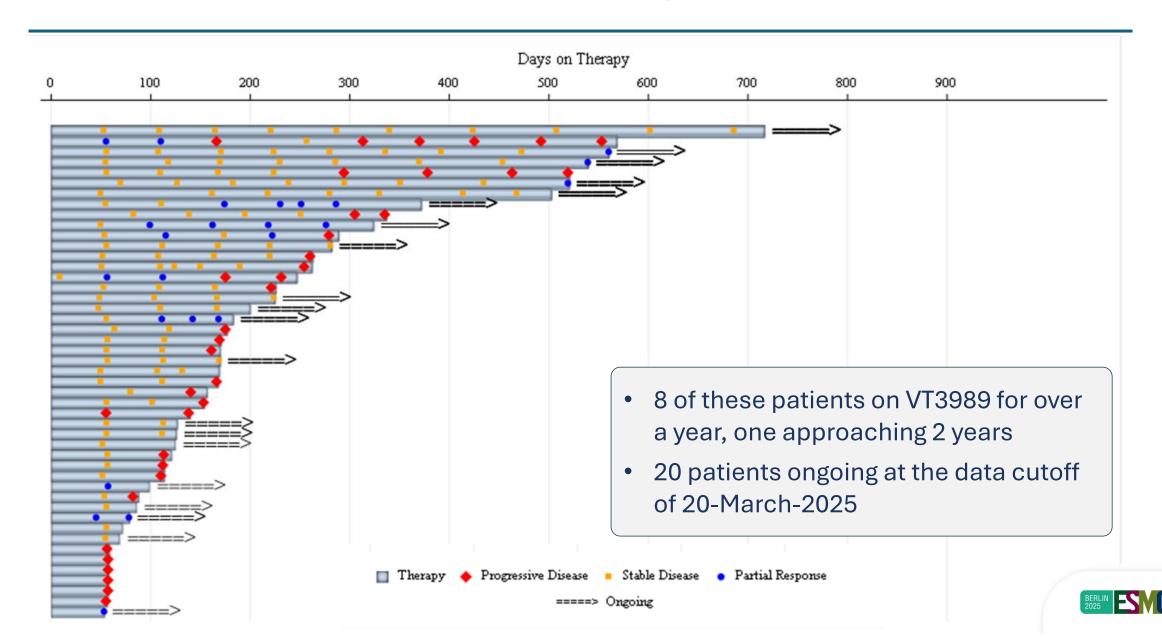
TEAEs in ≥10% of Participants (All Grades, Grades ≥3; N=172)


- Most reported events are mild or moderate in severity
- Treatment related SAEs occurred infrequently, n=10 (5.8%)
- The most common treatment related AEs were low grade fatigue, proteinuria and peripheral edema
- Proteinuria is reversible
- No decline in creatinine clearance or serum albumin
- Discontinuation due to AEs: 3.5%

	Total N=172: n (%)			
	TEAEs		TRAEs	
Preferred Term:	Total	Grade 3/4	Total	Grade 3/4
Subjects with any TEAEs / TRAEs	165 (95.9)	62 (36.0)	138 (80.2)	15 (8.7)
Fatigue	69 (40.1)	2 (1.2)	34 (19.8)	1 (0.6)
UACR increased	56 (32.6)	3 (1.7)	54 (31.4)	3 (1.7)
Nausea	49 (28.5)	0 (0.0)	25 (14.5)	0 (0.0)
Proteinuria	49 (28.5)	0 (0.0)	48 (27.9)	0 (0.0)
Peripheral oedema	48 (27.9)	1 (0.6)	40 (23.3)	0 (0.0)
Dyspnoea	45 (26.2)	12 (7.0)	4 (2.3)	2 (1.2)
Anaemia	39 (22.7)	8 (4.7)	11 (6.4)	0 (0.0)
Constipation	36 (20.9)	0 (0.0)	6 (3.5)	0 (0.0)
Decreased appetite	35 (20.3)	0 (0.0)	8 (4.7)	0 (0.0)
Cough	33 (19.2)	0 (0.0)	3 (1.7)	0 (0.0)
Dizziness	31 (18.0)	0 (0.0)	6 (3.5)	0 (0.0)
Hyponatraemia	28 (16.3)	2 (1.2)	3 (1.7)	0 (0.0)
Arthralgia	27 (15.7)	0 (0.0)	2 (1.2)	0 (0.0)
Headache	27 (15.7)	0 (0.0)	3 (1.7)	0 (0.0)
Diarrhoea	26 (15.1)	0 (0.0)	6 (3.5)	0 (0.0)
Vomiting	25 (14.5)	1 (0.6)	7 (4.1)	0 (0.0)
AST increased	24 (14.0)	1 (0.6)	13 (7.6)	1 (0.6)
Hypotension	24 (14.0)	3 (1.7)	4 (2.3)	1 (0.6)
Periorbital oedema	22 (12.8)	0 (0.0)	20 (11.6)	0 (0.0)
Blood creatinine increased	22 (12.8)	0 (0.0)	13 (7.6)	0 (0.0)
Pleural effusion	21 (12.2)	4 (2.3)	2 (1.2)	0 (0.0)
Abdominal distension	20 (11.6)	0 (0.0)	4 (2.3)	0 (0.0)
ALT increased	20 (11.6)	1 (0.6)	12 (7.0)	1 (0.6)
Abdominal pain	19 (11.0)	1 (0.6)	1 (0.6)	0 (0.0)
Back pain	18 (10.5)	1 (0.6)	0 (0.0)	0 (0.0)

ngres

Compelling Efficacy with Broad Tumor Shrinkage


Mesothelioma patients treated at clinically optimized dose (50 or 100 mg 2W/2W, n=47)

^{*} PD due to new lesion or increase in non-target lesion

Durable Clinical Benefit at Clinically Optimized Dose (n=47)

VT3989 has Superior Safety and Efficacy in Mesothelioma Compared to Salvage Chemotherapy

		N=47*	N=22**
Best Response ¹			
Partial Response	n (%)	12 (26)	7 (32)
Stable Disease	n (%)	28 (60)	12 (54)
Progressive Disease	n (%)	7 (15)	3 (14)
Disease Control Rate ²	n (%)	40 (85)	19 (86)
Clinical Benefit Rate ³	n (%)	21 (45)	8 (36)
Duration of Response	Median	24	NE
(weeks) ⁴	25th, 75th	17.14, NE	23.57, NE
Progression Free Survival	Median	25	40
(weeks) ⁴	25th, 75th	16.14, 43.57	24.14, NE
Subjects with Disease	n (06)	25 (52)	6 (27)
Progression	n (%)	25 (53)	6 (27)
Subjects who Died	n (%)	1 (2)	0
Censored Subjects	n (%)	21 (45)	16 (73)

SOC (gemcitabine or vinorelbine)		
ORR	5-8%	
PFS (weeks)	15	
Safety Profile	G3/4 neutropenia Peripheral neuropathy Injection site reaction Vomiting Diarrhea	(69%) (25%) (16%) (20%) (17%)

EClinicalMedicine. 2022;48:101432 Lancet Oncol. 2021;22(10):1438-1447 Lancet Oncol. 2017;18(9):1261-1273 Ann Oncol. 2020;31(12):1734-1745 Lancet Oncol. 2018;19(6):799–811 Lancet Oncology. 2022 Apr 1;23(4):540-52 Lung Cancer. 2014 Jun 1;84(3):271-4

Notes: Duration of response is the duration from the date of response (CR or PR) to the date of progression (PD) via scan or death. Patients who did not respond or die will be censored at the date that the patient was last known to be alive and progression-free (i.e., last scan date). The data cut used for this table is 20March2025. 1 PR and CR do not need to be confirmed. 2 Disease Control Rate = CR + PR + at first disease assessment. 3 Clilnical Benefit Rate = CR+PR+SD lasting \geq 24 weeks (corresponding to three disease assessments). 4 Based on Kaplan Meir Methods, Disease Progression is via scan or clinical progression. NE: Not Estimable

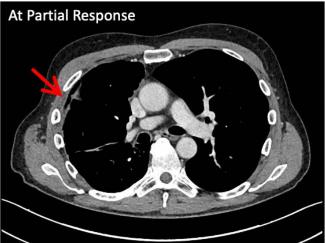


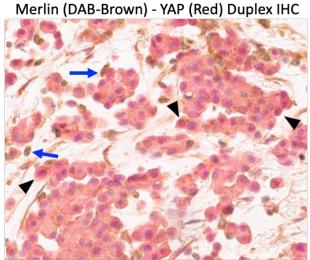
^{*}Clinically optimized dose regardless of UACR threshold

^{**}Clinically optimized dose and optimal UACR threshold, all 22 patients previously received IO therapy

VT3989 partial response in mesothelioma patients without NF2 mutations show loss of Merlin

Case 1: Pleural Mesothelioma (No NF2 mutation detected) PR -43.8%





Merlin (DAB-Brown) - YAP (Red) Duplex IHC

Case 2: Pleural Mesothelioma (No NF2 mutation detected) PR -69.8%

Baseline Target Lesion

- Black arrowhead: Tumor cells Merlin negative; nuclear YAP positive (Red)
- Blue arrow: Lymphocytes Merlin positive staining (Brown)

Conclusions

VT3989-001:

- Compelling efficacy in pleural and non-pleural refractory mesothelioma
- Favorable safety profile with few ≥ grade 3 TRAEs (N=172)
- Proteinuria is reversible with no decline in creatinine clearance or serum albumin
- Optimal balance of efficacy and safety achieved through intermittent dosing and UACR dose modification threshold
- Results support a registrational 3L Phase 3 study in mesothelioma
- Study data led to FDA Orphan Drug and Fast Track Designations for the treatment of patients with mesothelioma

Acknowledgements

All Patients and their Caregivers

Study Teams

University of Texas MD Anderson Cancer Center, Houston, TX, USA
Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
Massachusetts General Hospital Cancer Center, Boston, MA, USA
Memorial Sloan Kettering Cancer Center, New York, NY, USA
University of Minnesota Medical School, Minneapolis, MN, USA
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
Monash Medical Centre, Clayton, VIC, Australia
School of Medicine, University of Western Australia & Linear Clinical Research Perth, WA, Australia
NEXT Oncology, San Antonio, TX, USA
University of Chicago, Chicago, IL, USA

Sponsor & Clinical Research

Vivace Therapeutics InClin

