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Abstract

The Hippo pathway is a highly conserved signalling network that 
controls tissue growth and cell fate, responding to physical properties 
of the tissue microenvironment and cell biological features such as 
adhesion and polarity. Hippo signalling perturbation is associated 
with several human diseases, particularly various solid cancers. Hippo 
pathway-targeted therapies are beginning to emerge for the treatment 
of cancer, most of which are focused on disrupting the ability of 
the YAP and TAZ transcription co-activator proteins to promote 
transcription of genes with their cognate TEAD1–4 DNA binding 
proteins. Recently, TEAD inhibitors have shown promise in a phase I 
clinical trial in cancers that are enriched for Hippo pathway mutations, 
such as mesothelioma. Moreover, Hippo pathway-targeted therapies 
have great potential to be combined with RAS–MAPK pathway 
inhibitors, given the close functional relationship that these signalling 
pathways share in development and disease.
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Discovery and biological functions of the  
Hippo pathway
The Hippo pathway was initially discovered through genetic studies 
in Drosophila, in which mutations in pathway genes were found to 
cause strong epithelial tissue overgrowth1–9. Upon further investiga-
tion, mutation of founding Hippo pathway members was shown to be 
important for control of both cell proliferation and apoptosis. Spe-
cifically, Hippo pathway-defective cells in Drosophila larval imaginal 
discs — epithelial tissues that give rise to adult organs such as the eye 
and wing — proliferated more rapidly than their normal counterparts 
and failed to enter quiescence at the appropriate developmental stage. 
In addition, eye cells with compromised Hippo pathway activity were 
impervious to the programmed cell death that normally sculpts this 
organ during pupal development1–9. The net result was spectacular 
tumour-like growths caused by an excess of cells, which were subse-
quently shown to be driven by Yorkie/YAP hyperactivation17. Similarly, 
subsequent studies in vertebrates revealed that when Hippo signalling 
was disrupted, epithelial organs such as the skin, liver and gastrointes-
tinal tract also dramatically overgrew18,27–29. Hippo signalling has also 
been linked to the growth and development of vertebrate heart and 
skeletal muscle, neuronal tissues and vascular networks and therefore 
was concluded to be a key regulator of organ growth30–33.

Subsequently, the Hippo pathway was found to regulate cell fate 
decisions at various stages of organismal development. The first of 
these was the fate choice of a specific class of photoreceptor cells  
(R8 cells) in the Drosophila eye23. The Hippo pathway defines whether 
these cells adopt the ability to sense blue light or green light — a deci-
sion that involves most, but not all, of the pathway from upstream 
components to transcriptional regulators23,34–37. Additionally, the 
Hippo pathway has a crucial role in the first cell fate decision during 
mammalian embryonic development, determining whether a cell will 
become inner cell mass or trophectoderm24. The role of the Hippo 
pathway as a regulator of epithelial organ size was challenged recently, 
based on the observation that many cells (particularly columnar epithe-
lial cells) have low YAP–TEAD activity and YAP or TEADs are sometimes 
dispensable for their normal growth38. This study proposed that YAP 
and TEAD are important for cells with ‘flat’ morphology (for example, 
endothelial cells, squamous epithelial cells and so forth) and only 
drive proliferation of columnar epithelia when they are ectopically 
hyperactivated38. As such, the ‘normal’ role of the Hippo pathway 
in development is still an open question, and this is important for 
consideration of how we can therapeutically target the pathway and 
manage on-target toxicity.

Regulation of Hippo pathway activity
Unlike most signalling pathways, which are regulated by transmembrane 
receptors and their cognate ligands, the Hippo pathway is predomi-
nantly controlled by properties of the tissue microenvironment. These 
properties include mechanical forces such as tension, compression 
and shear forces, which differ depending on the tissue and its local 
environment10,39,40. These discoveries were of major importance and 
revealed that mechanical forces can influence both YAP and TAZ nuclear 
localization directly41, as well as upstream Hippo signalling events, which 
then act on YAP and TAZ42,43. Hippo signalling is also sensitive to per-
turbations in core cell biological properties, such as cell polarity and 
adhesion of cells to other cells and the extracellular matrix10,39,40. Further, 
Hippo signalling can be influenced by G protein-coupled receptors 
(GPCRs) and stresses associated with fluctuations in energy, heat and 
osmolarity, although these require further investigation in animals to 

Introduction
Founding members of what is now referred to as the Hippo 
pathway were originally identified in Drosophila genetic screens 
and cloned in the mid-1990s and early 2000s1–9. Mutations in the 
warts, salvador and hippo genes were uncovered because they 
triggered striking overgrowth of Drosophila epithelial tissues1–9. 
These discoveries led to the conclusion that the Hippo pathway was 
important for epithelial tissue growth control, and the discovery 
that the human salvador orthologue SAV1 was deleted in kidney 
cancer cell lines provided initial evidence of a role for this pathway 
in human cancer1.

After these discoveries, Hippo pathway research surged, enabling 
significant insight into how this pathway mediates signal transduc-
tion and its biological functions in various cell types, tissues, species 
and human diseases10–16. More than 40 Hippo pathway proteins have 
been discovered, the vast majority of which are conserved throughout 
evolution, for example, between Drosophila and mammals (see Table 1 
for conserved Hippo pathway proteins and Fig. 1 for a simplified path-
way depiction)10–16. Key steps in pathway regulation were identified, 
such as the phosphorylation of the key oncoproteins Yes-associated 
protein (YAP) and transcriptional co-activator with PDZ binding motif 
(TAZ) (Drosophila Yorkie (Yki)), which controls their nucleocytoplas-
mic distribution and ability to regulate transcription17–20. The Hippo 
pathway was found to be evolutionarily ancient, with the discov-
ery that several central pathway proteins pre-date the existence of 
metazoans21,22, and the pathway was shown to regulate cell fate as well 
as tissue growth23,24. An appreciation of the role of the Hippo pathway 
in various human cancers was further revealed though large-scale 
cancer genome sequencing studies, which identified roles in many 
solid cancers, in particular mesothelioma and meningioma25,26. This 
rich knowledge base laid a platform for therapeutic targeting of 
the Hippo pathway, which holds great promise for both cancer and 
regenerative medicine.

A multitude of Hippo-targeted therapies are currently in active 
development, with several already undergoing clinical trials. Inter-
estingly, most of these therapies target the TEA domain transcription 
factor 1 (TEAD1)–TEAD4 DNA binding proteins, which are highly homol-
ogous and sit at the very base of the Hippo pathway. TEAD inhibitory 
compounds have been developed with a view to them being deployed 
as novel anticancer therapies. In the context of tissue regeneration 
and repair, efforts have been made to target central Hippo pathway 
kinases such as the serine/threonine protein kinases LATS1 and LATS2 
and mammalian sterile-20-like kinase 1 (MST1; also known as STK4) and 
MST2 (also known as STK3) (hereafter LATS1/2 and MST1/2, respec-
tively), as well as proteins that promote the activity of these kinases, 
such as Salvador.

This Review first provides an overview of the Hippo pathway, its 
regulation, signalling and biological functions. The latest develop-
ments in the field of Hippo pathway-targeted therapies are discussed, 
with a focus on TEAD inhibitors, primarily in the context of cancers, 
given that disease-focused human genome sequencing efforts have 
revealed a prominent role for Hippo signalling in cancers compared 
with other human diseases. The potential for TEAD inhibitors to be 
used both as anticancer monotherapies and as combination therapies 
is assessed, given the important functional relationships that exist 
between the Hippo pathway and the RAS–MAPK pathway, another 
developmental signalling pathway of major importance for human 
cancer. Finally, TEAD inhibitors that have progressed to phase I human 
clinical trials are highlighted.
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understand their full significance12. For detailed reviews of the regulation 
of Hippo pathway activity, the reader is referred elsewhere10–16.

Organization of the Hippo pathway
A major challenge following the discovery of Warts, Salvador and Hippo 
as a three-member signalling complex comprised of two cytoplasmic 
kinases and an adaptor protein, was the identification of upstream and 
downstream Hippo pathway components. Answers to this question were 
largely revealed by unbiased screens — both in vivo Drosophila genetic 
screens, and Drosophila and human cell-based signalling activity and 
protein–protein interaction screens. Collectively, these efforts revealed 
that the Hippo pathway is a complex network of more than 40 proteins, 
which can be broadly organized into three groups — transcription regu-
lators, the core kinase cassette and upstream signalling10–16. Table 1 
lists high-confidence Hippo pathway proteins, that is, those that have 
convincingly been proved to be Hippo pathway proteins in multiple 
studies, and most of which are functionally conserved between Dros-
ophila and humans. Many other proteins have been implicated in Hippo 
signalling but for simplicity they are not discussed in detail here. For 
more information on this topic the reader is referred elsewhere10–16.

Hippo pathway transcription regulators
YAP and TAZ are transcription co-activator proteins that are the central 
downstream effectors of the Hippo pathway17. YAP, TAZ and their Dros-
ophila orthologue Yorkie do not directly bind to DNA, but bridge DNA 
binding proteins and transcription-promoting proteins, such as the 
Mediator complex, Trithorax-related complex and SWI/SNF complex, 
to promote gene expression44–48. TEAD1–TEAD4 (Scalloped in Dros-
ophila) are the major DNA binding proteins of the Hippo pathway and 
possess a TEA DNA binding domain and a YAP/TAZ binding domain49–53. 
Vestigial-like family member 4 (VGLL4; Tgi in Drosophila) is a transcrip-
tion co-repressor protein that antagonizes YAP/TAZ by competing 
for an overlapping binding surface on TEAD1–TEAD4 (refs. 54,55). 
INSM1 (Nerfin-1 in Drosophila) is another TEAD-binding transcription 
co-repressor that binds to the TEAD DNA binding domain and therefore, 
unlike VGLL4, does not compete with YAP/TAZ for TEAD binding56,57.

The biochemical mechanism by which VGLL4 and INSM1 repress 
transcription is not well defined, but studies in Drosophila and 
human cells have identified connections between both proteins and 
the CtBP transcription co-repressor complex57–59. Further, recent 
live microscopy studies revealed that Drosophila Scalloped binds 
to DNA on a range of timescales from milliseconds to minutes and 
that its residence time on DNA is extended by the Yki co-activator but 
reduced by the Tgi and Nerfin-1 co-repressors60. These findings, mir-
rored by similar observations in human cells61, suggest that productive 
transcription-inducing events are mediated by Scalloped/TEADs when 
they bind to DNA for extended periods of time. YAP/TAZ and INSM1, 
and their Drosophila orthologues Yki and Nerfin-1 are expressed pre-
dominantly in a mutually exclusive manner (for example, YAP, TAZ 
and Yki are expressed in most epithelial cells whereas INSM1 and Ner-
fin-1 are expressed in neuroendocrine cells and neuronal subsets)56,62, 
suggesting that some cell types cannot tolerate the co-expression of 
these proteins, as they exert competing influences on TEAD-regulated 
transcription. Before the discovery of the Hippo pathway, Vestigial, 
another transcription coregulator, was discovered as a partner of 
Scalloped/TEAD in Drosophila63–65. Vestigial has three human ortho-
logues (VGLL1–VGLL3), which have been studied far less than YAP and 
TAZ but have also been implicated in human diseases such as cancer66. 
In Drosophila, the Vestigial–Scalloped complex promotes wing cell fate 

during development and functions largely independently of Hippo 
signalling in this context67.

Hippo pathway core kinase cassette and its direct regulators
The Hippo pathway core kinase cassette comprises two serine thre-
onine kinases and two adaptor proteins. MST1 and MST2 (Hippo in 
Drosophila) are STE20-like protein kinases that bind to the adaptor 
protein SAV1 (Salvador in Drosophila) which promotes MST1/2 activa-
tion. Activated MST1/2 phosphorylates both the adaptor proteins MOB 

Table 1 | High-confidence Hippo pathway proteins

Drosophila protein Human orthologues

Transcription Scalloped TEAD1, TEAD2, TEAD3, 
TEAD4

Yorkie YAP, TAZ

Tgi VGLL4

Nerfin-1 INSM1A, INSM1B

Core kinase cassette Warts LATS1, LATS2

Mats MOB1A, MOB1B

Salvador SAV1

Hippo MST1, MST2

Happyhour MAP4K1, MAP4K2, 
MAP4K3, MAP4K5

Misshapen MAP4K4, MAP4K6, 
MAP4K7

Upstream signalling Tao TAOK1, TAOK2, TAOK3

STRIPAK complex STRIPAK complex

Merlin NF2

Kibra WWC1, WWC2, WWC3

Expanded FRMD6?

? AMOT, AMOTL1, AMOTL2

Crumbs CRB3

Par-1 MARK2, MARK3, MARK4

Ajuba AJUBA, LIMD1, WTIP

Scribble SCRIB

Lethal giant larvae LGL1, LGL2?

Kirre? KIRREL1

Zyxin ZYXIN, LPP, TRIP6

Pez PTPN14

PI4KIIIα PI4KA?

Fat FAT1, FAT2, FAT3, FAT4?

α-Spectrin SPTAN1

β-Spectrin SPTBN1

β-Heavy spectrin SPTBN5

Proteins are organized into three groups based on their known functions: transcription, core 
kinase cassette and upstream signalling. For simplicity, only the highest-confidence Hippo 
pathway proteins have been listed, with this classification based on proteins being proved 
in multiple independent studies and/or functional conservation between Drosophila and 
humans. Both Drosophila and human orthologues are listed. For some proteins, queries 
about functional conservation are indicated by a ‘?’. Note, the STRIPAK complex is comprised 
of multiple proteins. KIRREL1, Kirre-like nephrin family adhesion molecule; MAP4K1, 
mitogen-activated protein kinase kinase kinase kinase 1; MOB1A, MOB kinase activator 1A; 
MST1, mammalian sterile-20-like kinase 1; STRIPAK, striatin-interacting phosphatase and 
kinase; TAOK1, thousand and one amino acid protein kinase 1; TAZ, transcriptional co-activator 
with PDZ binding motif; TEAD1, TEA domain transcription factor 1; VGLL4, Vestigial-like family 
member 4; WWC1, WW and C2 domain-containing 1; YAP, Yes-associated protein.
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kinase activator 1A (MOB1A) and MOB1B (hereafter MOB1A/B (Mats in 
Drosophila)) and the LATS1/2 kinases (Warts in Drosophila) to activate 
LATS1/2 kinase activity1–8,68. The MAP4K and thousand and one amino 
acid protein kinases 1–3 (TAOK family) kinases, which are also STE20-
like protein kinases, can likewise phosphorylate the hydrophobic motif 
of LATS1 and LATS2 and activate them69,70. In addition, TAOK kinases 

can phosphorylate the activation loop of MST1/2 and thus activate 
the Hippo pathway at two points71,72. MST1/2 activity is antagonized by 
the multi-protein striatin-interacting phosphatase and kinase (STRI-
PAK) phosphatase complex, which reverses MST1/2 activation loop 
phosphorylation73. The central substrates of the LATS1/2 kinases are the 
YAP and TAZ transcription co-activators (Yorkie in Drosophila), which 
they phosphorylate on multiple serine residues, thereby limiting their 
nuclear access and half-life17–20.

Upstream Hippo signalling
Upstream Hippo signalling is complex, and consists of multiple independ-
ent branches that also engage in some degree of regulatory crosstalk74. 
Most upstream Hippo pathway proteins are conserved between Drosoph-
ila and humans, although some uncertainty on this remains. Addition-
ally, upstream Hippo signalling has currently been more thoroughly 
characterized in Drosophila than in mammals, in terms of the proteins 
involved and their spatial organization within cells and signalling modes.

Core kinase cassette activators. The neurofibromin 2 (NF2; Merlin in 
Drosophila) and WW and C2 domain-containing 1–3 (WWC1–3; Kibra in 
Drosophila) proteins serve similar Hippo signalling functions, despite 
lacking obvious homology. In Drosophila epithelial tissues, both pro-
teins accumulate at the apical plasma membrane and serve as scaffolds 
to facilitate phosphorylation and activation of the Warts/LATS kinases 
by Hippo/MST and Hippo-like kinases75. Drosophila Expanded likely 
operates in a similar manner given the genetic redundancy it exhibits 
with both Merlin and Kibra, although it is not obviously conserved 
in humans76. Expanded does have some sequence conservation with 
FRMD6 and this protein can influence YAP activity, but it is unclear 
whether FRMD6 is a true functional equivalent of Expanded77. Recent 
studies indicate that Merlin is recruited to epithelial apical plasma 
membranes via phospholipids, which also mediate assembly into con-
densates with altered physical properties. In Drosophila, the lipid kinase 
PI4KIII (PI4KA in humans) works together with the Pez phosphatase 
(PTPN14 in humans) to promote Merlin recruitment to the medial api-
cal domain of epithelial cells78. Both the PIP2 and PI4P phospholipids 
mediate Merlin association with the plasma membrane and, somewhat 
paradoxically, PI4P promotes Hippo pathway activity in Drosophila 
epithelial tissues but has the opposite effect in human cultured cells79. 
Thus, further studies are warranted to clarify this important feature of 
Hippo signalling, perhaps via in vivo mammalian studies.

Multiple apicobasal cell polarity proteins regulate Hippo path-
way activity in both Drosophila and mammals. In Drosophila, the 
Scribble–Lgl–Dlg basolateral cell polarity complex promotes Hippo 
pathway activity in the context of both organ growth and cell fate37,80, 
and SCRIB performs a similar function in human cells81. Drosophila 
Crumbs acts via Expanded to promote Hippo pathway activity80,82–84, 
whereas in humans the CRB3–PATJ–PALS complex binds to many pro-
teins such as angiomotin family proteins (AMOT, AMOTL1 and AMOTL2) 
and YAP at human cell–cell adhesions to repress YAP activity and acti-
vate LATS1/2 kinase activity85,86. The transmembrane protein Kirre-like 
nephrin family adhesion molecule 1 (KIRREL1) was recently discovered 
to promote Hippo signalling; KIRREL1 recruits SAV1 to cell membranes, 
causing LATS1/2 activation and YAP repression87,88.

The Hippo pathway couples mechanical forces to changes in cell 
behaviour, including proliferation and cell fate specification41,42. Such 
forces modulate actomyosin contractility and, as such, many proteins 
that regulate the actin cytoskeleton and the cellular sites it anchors to (for 
example, adherens junctions, basal spot junctions and focal adhesions) 
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Fig. 1 | Simplified depiction of the human Hippo pathway. Proteins that 
promote Hippo signalling and repress Yes-associated protein/transcriptional 
co-activator with PDZ binding motif–TEA domain transcription factor 
(YAP/TAZ–TEAD) transcription are in blue and proteins that promote 
YAP/TAZ–TEAD transcription are in red. For detailed reviews of the Hippo 
pathway, the reader is referred elsewhere10–16. KIRREL, Kirre-like nephrin family 
adhesion molecule; LATS1/2, serine/threonine protein kinases; MAP4Ks, 
mitogen-activated protein kinase kinase kinase kinase 1–7; MARKs, microtubule 
affinity-regulating kinase 2–4; MOBs, MOB kinase activator 1A and 1B; MST1/2, 
mammalian sterile-20-like kinase 1 and 2; NF2, neurofibromin 2; SAV, salvador; 
STRIPAK, striatin-interacting phosphatase and kinase complex; TAOKs, 
thousand and one amino acid protein kinases 1–3; TEADs, TEAD1–TEAD4; VGLL4, 
Vestigial-like family member 4; WWCs, WW and C2 domain-containing 1–3.
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have been linked to Hippo signalling. Among these proteins are spectrins, 
which are large spring-like molecules that bind to F-actin and stabilize the 
plasma membrane. In various Drosophila epithelial tissues, α-spectrin 
regulates Hippo signalling and does so by forming heterotetramers with 
either β-spectrin or β-heavy spectrin89–91. Various mechanisms have been 
ascribed to how spectrins influence Hippo signalling, from binding to 
Expanded and modulating the concentration of Hippo signalling com-
plexes in the apical plasma membrane90, to indirectly influencing Hippo 
signalling by controlling cortical actomyosin contractility89. A more 
recent study indicated that β-heavy spectrin influences Ajuba and Hippo 
signalling by competing with non-muscle myosin for F-actin binding92.

The Drosophila Fat/Dachsous cadherins were the first defined 
Hippo pathway transmembrane proteins and are important regulators 
of epithelial tissue growth, as well as planar cell polarity93–97. A suite of 
proteins operate downstream of Fat/Dachsous to relay signals to the 
core kinase cassette, including kinases, ubiquitin ligases and mechano-
sensitive proteins, and together they represent a major signalling arm in 
the Drosophila Hippo pathway98. However, whether these proteins also 
regulate the human Hippo pathway is still unclear. The FAT1–FAT4 cadherin 
genes are frequently mutated in many cancers and have been implicated 
in tumorigenesis and Hippo signalling99,100. However, clear and detailed 
biochemical signalling mechanisms that link FAT cadherins to the core 
Hippo pathway in mammals have not yet been defined. Further studies are 
required to determine whether and how the FAT1–FAT4 cadherins regulate 
the Hippo pathway in mammals and the contexts in which this may happen.

Core kinase cassette repressors. A well-defined upstream signalling 
complex that limits Hippo signalling in Drosophila is mediated by the LIM 
domain protein Ajuba101. Ajuba binds primarily to E-cadherin-rich com-
plexes at adherens junctions and basal spot junctions of Drosophila epi-
thelial cells in response to increased actomyosin contractility43,102. Here, 
Ajuba binds to Warts and limits its ability to be activated by Hippo, which 
does not accumulate at these cell junctions43,102. In this way, Hippo sig-
nalling is linked to mechanical forces such as stretch and compression, 
which offers an explanation for how this pathway regulates tissue growth 
in response to physical forces43. Ajuba has three human orthologues 
(AJUBA, LIMD1 and WTIP); cell culture-based studies have indicated 
that these proteins also bind to adherens junctions and repress LATS1/2 
activity in a manner that is sensitive to actomyosin contractility103.

Microtubule affinity-regulating kinase (MARK) family kinases have 
also been identified as important Hippo pathway regulators, possibly 
by multiple mechanisms. In Drosophila, Par-1 was shown to influence 
Hippo-regulated tissue growth both by regulating the Hippo kinase104 
and by influencing Kibra stability105. Independently, three human Par-1 
homologues (MARK2, MARK3 and MARK4) were identified as regulators 
of Hippo signalling in cell-based screens106,107. In addition to regulat-
ing the Hippo orthologues MST1 and MST2, a recent study found that 
MARK2 and MARK3 phosphorylate NF2 and YAP, with both events serv-
ing to stimulate YAP activity108. From a cancer therapy perspective, these 
discoveries were important because: first, they identify a way to perturb 
YAP–TEAD activity that is independent of direct YAP–TEAD inhibitors; 
second, being kinases, the MARKs are readily druggable; and third, 
MARK2, MARK3 and MARK4 activate YAP and therefore are predicted 
to be oncogenic, whereas most Hippo pathway kinases (for example, 
LATS1/2 and MST1/2) are tumour suppressors and are therefore likely to 
be unsuitable targets for cancer therapies (see below and Figs. 1 and 2).

Interconnected upstream branches. A consistent theme in upstream 
Hippo signalling over many years has been regulatory crosstalk 

between different upstream branches of the pathway, which illustrates 
the complex interactions that occur in this pathway. In Drosophila, for 
instance, the Fat and Expanded branches of Hippo signalling influ-
ence the core kinase cassette via different mechanisms109, but Fat 
also influences the abundance and apical membrane localization of 
Expanded94,95,97. More recently, upstream Hippo signalling was pro-
posed to operate in two major arms, one involving NF2 and MAP4Ks and 
the other involving WWC1–3, SAV1 and MST1/2, which independently 
activate LATS1/2 (ref. 110). Although this model has merit, many other 
studies argue against a strict division of labour between upstream 
Hippo signalling complexes. For example, although NF2 and WWC1–3 
could function independently of each other to some degree in the 
so-called HIPPO1 and HIPPO2 branches of Hippo signalling, these pro-
teins can form physical complexes in both humans and Drosophila and 
recruit each other to sites of Hippo pathway activation, suggesting that 
they also function together75,111–113. Similarly, in Drosophila, Merlin/NF2 
can also form a physical complex with Expanded111–113, although these 
proteins probably operate largely independently of each other75.

The role of the Hippo pathway in human diseases
Hippo pathway perturbation has been linked to select human diseases, 
most notably cancer and heart disease, as reviewed elsewhere13,14,114,115. 
A potential role for the Hippo pathway in human disease was first rec-
ognized in model organism studies. Specifically, mutations in Hippo 
pathway genes were found to disrupt multiple biological processes that 
are important for animal development and human disease, including cell 
proliferation, apoptosis, differentiation and tissue growth10–16. Model 
organism studies also revealed potential roles for the Hippo pathway in 
other conditions such as heart disease, in which deletion of the murine 
Yap orthologue impaired neonatal cardiac regeneration, whereas YAP 
hyperactivation promoted heart repair and function115. Subsequently, 
mutations in select Hippo pathway genes (NF2 and TEAD1) were identified 
in familial human diseases. NF2 mutations cause the cancer syndrome 
type 2 neurofibromatosis116, and loss-of-function TEAD1 mutations 
underpin an autosomal dominant eye disorder called Sveinsson’s cho-
rioretinal atrophy117. This section primarily focuses on cancer given the 
prevalence of Hippo pathway gene mutations in this disease compared 
with other human conditions. Deregulation of Hippo signalling and 
YAP/TAZ–TEADs have been implicated in a broad range of common solid 
cancers such as colorectal, lung, breast, prostate and ovarian cancer14,25,26. 
However, most of these cancers have no obvious Hippo pathway muta-
tions and their transcriptional signatures often do not suggest depend-
ency on YAP/TAZ–TEAD14,25,26. Accordingly, the discussion concentrates 
on solid cancers that have obvious mutations in Hippo pathway genes.

Solid cancers
Large-scale cancer genome sequencing efforts identified Hippo path-
way mutations to occur across a broad range of solid cancers, lead-
ing to its classification as one of the ten most important signalling 
pathways in cancer118. Genetic disruption of the Hippo pathway occurs 
via various mechanisms (for example, point mutations, deletions, 
chromosomal translocations, amplification and overexpression)14,25. 
Typically, these perturbations reduce activity of Hippo pathway kinases 
(for example, LATS1/2) and cause the transcription-promoting activity 
of YAP/TAZ–TEADs to be elevated. Hippo pathway gene mutations are 
concentrated in select cancers, that is, mesothelioma, meningioma 
and Schwannoma. Hippo pathway gene mutations and elevated YAP 
and TEAD activity are also enriched in squamous epithelial cancers, 
which is intriguing, especially given the recent evidence that Hippo 
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signalling is especially important for the biology of ‘flat’ cells25,38.  
In the TCGA PanCan 2018 Combined Study, which included 87 patients 
with mesothelioma out of 10,953 total patients across 32 cancer types, 
32.18% of patients with mesothelioma harboured NF2 mutations. Muta-
tion frequencies for LATS1 and LATS2 in mesothelioma were 2.3% and 
10.3%, respectively119,120. Other mesothelioma studies have reported a 
higher mutation frequency of LATS2 (22%121) and NF2 alterations rang-
ing from 20% to 53%122–125. Given that the Hippo pathway is exquisitely 
sensitive to changes in the tissue microenvironment, activity of this 
pathway is also likely to be altered by non-genetic mechanisms such 
as a change in tissue rigidity.

An increasing number of oncogenic fusion proteins have been 
defined in human cancers involving key Hippo pathway proteins, 
predominantly the YAP, TAZ and TEAD transcription regulators. For 
example, the disease-defining mutations in the sarcoma epithelioid 
haemangioendothelioma (EHE) are gene fusions of TAZ with CAMTA1 
or YAP with TFE3 (refs. 126–129). YAP also becomes fused with various 
different transcription factors in other malignancies. In almost all cases, 
these gene fusions encode oncoproteins in which the amino terminus of 
YAP or TAZ is intact and fused to transcription regulatory protein, while 
most of the Hippo regulatory regions of YAP/TAZ are deleted130. As such, 
these fusion proteins retain their ability to both bind to TEADs and recruit 
transcription apparatus and drive cancer primarily by hyperactivating 
TEAD target genes. In addition to YAP or TAZ fusion proteins, recurrent 
VGLL family fusion proteins have also been documented in sarcomas such 
as spindle cell rhabdomyosarcoma131,132. Finally, in contrast to solid can-
cers, most of which display robust YAP/TAZ activity, haematological and 
neuroendocrine cancers have low YAP/TAZ activity133. As such, targeting 
YAP/TAZ–TEAD activity in these cancers is unlikely to prove beneficial.

Cancer therapy resistance. A major barrier to the effective treatment 
of many cancers is resistance to therapy, which can be either intrinsic or 
acquired134. In the latter scenario, therapy resistance can arise owing to 
de novo mutations, or by non-genetic mechanisms that invoke changes 
in the epigenome and gene expression134. Hippo pathway deregulation 
is recognized as a driver not only of tumorigenesis but also of cancer 
therapy resistance, via three main lines of evidence. Initially, targeted 
studies identified that manipulations such as overexpression of the 
YAP oncoprotein could drive resistance to common chemothera-
pies such as taxanes and platinum-based drugs, although the precise 
mechanism was not defined135. Subsequently, unbiased genetic stud-
ies revealed YAP as a gene that can supplant the oncogenic activity 
of KRAS136,137, and that YAP hyperactivation can drive resistance to 
RAS–MAPK pathway-targeted therapies, such as inhibitors specific for 
BRAF, MEK and KRAS138–140. More recently, several studies focused pre-
dominantly on gastrointestinal cancers identified YAP–TEAD-regulated 
transcription as driving the resistance of a rare subset of tumour cells 
to various therapies. Based on their transcriptomic profiles, these cells 
are thought to resemble stem cells and their emergence in response 
to cancer therapies has been termed oncofetal reprogramming141–144. 
These cells resemble those that arise in the gastrointestinal tract after 
severe damage that may be part of a normal regenerative response145.

Therapeutic targeting of the Hippo pathway
The Hippo pathway has long been considered a potential therapeu-
tic target for human diseases such as cancer and heart disease. In the 
context of cancer, it would be ideal to inhibit YAP/TAZ–TEAD transcrip-
tion activity by inactivating one or more of these proteins and/or by 
activating the upstream kinases such as LATS1/2 (Fig. 2). The powerful 
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Fig. 2 | How can the Hippo pathway be therapeu­
tically targeted? Three Hippo signalling nodes that 
are potential therapeutic targets in the context of 
cancer are depicted, as well as intervention strategies 
and therapy examples. a, Hyperactivation of Yes-
associated protein (YAP)–TEA domain trans cription 
factor (TEAD)-regulated transcription is a key event 
in tumorigenesis and cancer therapy resistance 
and theoretically could be targeted in four ways: (1) 
shifting the balance from YAP-mediated transcription 
activation to Vestigial-like family member 4 (VGLL4)-
mediated transcription repression; (2) inhibiting 
TEAD-regulated transcription completely; (3) targeting 
general transcription machinery; and (4) inhibiting 
key YAP–TEAD target genes (note that NUAK2 can 
also influence YAP/transcriptional co-activator with 
PDZ binding motif (TAZ) activity). At least two points 
of Hippo signal transduction could theoretically be 
targeted to promote Hippo signalling and reduce 
YAP–TEAD-regulated transcription: b, inhibition 
of the striatin-interacting phosphatase and kinase 
(STRIPAK)–PP2A phosphatase complex, which 
normally suppresses phosphorylation and activation 
of mammalian STE20-like protein kinase 1 (MST1) and 
MST2 (MST1/2); and c, inhibition of the microtubule 
affinity-regulating kinase (MARK) kinases, which 
phosphorylate multiple Hippo pathway proteins that 
serve to activate YAP–TEAD-regulated transcription. 
NF2, neurofibromin 2.
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growth-promoting properties of YAP and TAZ also offer a potential 
method to promote regeneration and repair of damaged organs such as 
the heart and ear. However, targeting the Hippo pathway for therapeu-
tic benefit presents several challenges. When the Hippo pathway first 
emerged as a novel therapeutic target, the MST1/2 and LATS1/2 kinases 
were the most druggable components based on existing pharmacologi-
cal knowledge. From a cancer treatment perspective, however, inhibiting 
these kinases would be inappropriate, as they are tumour suppressors 
that limit the activity of the YAP and TAZ oncoproteins. On the other 
hand, MST1/2 and LATS1/2 inhibitors have potential as regenerative 
therapies because of the ability of YAP and TAZ to promote tissue repair 
and regeneration114,115. Indeed, a reversible and selective MST1/2 kinase 
inhibitor, XMU-MP-1, can induce tissue repair and regeneration in mouse 
models of chemical-induced colitis and acute and chronic liver injury, 
and in a rat model of intracerebral haemorrhage brain injury146,147. Chemi-
cal modification of XMU-MP-1 led to the development of a potent and 
selective MST1/2 inhibitor, IHMT-MST1-58, which protected pancreatic 
islet β-cells from inflammatory cytokine-induced damage in vitro and 
demonstrated antidiabetes efficacy in rat models of type 1 diabetes and 
type 2 diabetes in vivo148. In addition to MST1/2 kinase inhibitors, signifi-
cant progress has been made in the identification and development of 
LATS1/2 inhibitors. These compounds promoted in vitro proliferation 
of inner-ear sensory supporting cells and primary cardiomyocytes, 
ex vivo growth of organoids derived from various human tissues, cell fate 
transitions in the lung and regeneration of multiple organs in mice149–155.

Although small molecule inhibitors of MST and LATS kinases show 
promise as regenerative therapeutics, several challenges remain in 
translating preclinical findings into human treatments. These include: 
first, ensuring the specificity and selectivity of MST1/2 or LATS1/2 
targeting without affecting other kinases in crucial pathways; sec-
ond, achieving tissue-specific delivery and action while avoiding 
unwanted systemic effects; and third, addressing potential long-term 
effects, such as an increased risk of cancer. Adeno-associated virus 9  
(AAV9)-based gene therapy has been explored as a potential solu-
tion to some of these challenges. Specifically, local knockdown of 
SAV1 using AAV9 is one approach that helps to overcome limitations 
associated with small molecule kinase inhibitors. In a pig model of 
ischaemia–reperfusion-induced myocardial infarction, local delivery 
of AAV9–SAV1 short hairpin RNA (shRNA) to repress LATS activity 
in border zone cardiomyocytes resulted in heart tissue renewal and 
improved heart function156. In an exciting recent development, this 
SAV1 gene therapy (termed YAP101) recently progressed to a phase I  
human clinical trial for patients with ischaemic heart failure and 
reduced ejection fraction157.

Beyond the founding Hippo pathway kinases MST1/2 and LATS1/2,  
other potential druggable targets have been identified, includ-
ing specific GPCRs, ROCK, FAK, MARK2–4, NUAK1 and NUAK2  
(refs. 104–108,158–165). Further, inhibitors of geranylgeranyltrans-
ferase type 1 subunit-β (PGGT1β) have been identified that inactivate 
YAP/TAZ activity by blocking Rho-GTPase signalling166. Although there 
are many potential upstream druggable targets to develop therapeutics 
to ameliorate dysfunction of the Hippo pathway and hyperactivation of 
YAP/TAZ in human diseases such as cancer, fibrosis and heart disease, 
inhibition of an upstream target that regulates multiple signalling 
pathways poses a challenge owing to the risk of reduced selectivity and 
increased toxicity. Furthermore, the upstream Hippo pathway is com-
plex, branched and interconnected and, as such, targeting upstream 
pathway proteins would likely be highly susceptible to bypass signalling 
and therapy resistance.

An obvious way to overcome such bypass signalling is to target 
YAP, TAZ and TEADs, which sit at the base of the Hippo pathway (Fig. 1 
and Box 1). However, these proteins are transcription regulators, which 
are traditionally difficult to target therapeutically. YAP and TAZ, which 
are transcription co-activators with no known catalytic activity, are still 
considered poor candidates for direct inhibition with small molecules. 
With this in mind, efforts have been made to target YAP expression 
directly via either RNA interference (for example, YAP1 antisense oli-
gonucleotides (ASOs))167 or targeted protein degradation strategies 
with YAP PROTACs168. In preclinical models of YAP-activated hepato-
cellular carcinoma (HCC) and head and neck squamous cell carcinoma 
(HNSCC), YAP1 ASO ION537 reduced YAP1 protein abundance and 
induced significant tumour regression167 and has progressed to a phase I  
clinical trial in humans (NCT04659096). It remains to be seen whether 
direct YAP targeting is clinically efficacious in cancers, especially given 
that the YAP paralogue TAZ could potentially compensate for YAP 
loss. YAP-specific therapeutics may also have different safety profiles 
compared with TEAD inhibitors (see below) as YAP interacts with and 
regulates the activity of other transcription factors besides TEADs169.

TEADs: the leading therapeutic target
Most signalling pathway-based therapies target cell surface receptors 
or signalling proteins. By contrast, Hippo pathway-targeted therapies 

Box 1 | Different classes of TEAD inhibitor
 

Over the past 20 or so years of research, the TEA domain 
transcription factors (TEADs) have emerged as the dominant 
therapeutic target in the Hippo pathway, which is an interesting 
counterpoint to most other signalling pathway therapeutics, which 
are enriched for agents that target transmembrane receptors and 
signalling kinases. This phenomenon reflects Hippo signalling 
logistics; there is a preponderance of tumour suppressor kinases in 
the pathway, multiple upstream branches and no easily targetable 
transmembrane receptors. Traditionally, transcription machinery 
is difficult to therapeutically target, with currently no transcription 
factor-targeted therapies approved for clinical use. TEAD inhibitors 
have the potential to be the first, with several compounds now 
in phase I clinical trials. Three different types of TEAD inhibitor 
have been developed to date: palmitate binding pocket (PBP) 
inhibitors, protein–protein interaction (PPI) inhibitors and degraders 
(PROTACs). TEAD degraders are still in preclinical development, 
whereas both TEAD PBP and PPI inhibitors have entered phase I 
clinical trials. TEAD PBP inhibitors are by far the most common class 
of TEAD inhibitor, with seven now in clinical trials, and many more 
in late-stage preclinical evaluation. These were largely isolated 
from unbiased compound library screens for Hippo–Yes-associated 
protein (YAP)–TEAD transcription, which in itself offers powerful 
reinforcement that TEADs are the ideal drug targets among Hippo 
pathway proteins. By contrast, TEAD PPI inhibitors have been 
developed based on careful structural biology studies focused 
on the YAP–TEAD binding interfaces. Despite their differences, 
potent TEAD PBP inhibitors and PPI inhibitors have both been 
developed and have similar efficacy in preclinical cancer models. 
This leaves human clinical trials as the likely arbiter of whether one 
or both TEAD inhibitor classes prevails to become the first Hippo 
pathway-targeted therapy in oncology.
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Table 2 | Select TEAD palmitate binding pocket inhibitors

Compound Mode of action Reported TEAD 
selectivity

Comments Year (ref.)

DC-TEADin02 Covalent TEAD4 Highly selective
Inhibits YAP–TEAD-regulated transcription

2019 (ref. 178)

TED-347 Covalent TEAD2/4 Inhibits YAP–TEAD binding, blocks YAP-TEAD-regulated transcription
Inhibits cell viability of patient-derived glioblastoma spheroids

2019 (ref. 195)

MGH-CP-1 Non-covalent TEAD2/4 Inhibits TEAD autopalmitoylation, directly occupying the PBP
Inhibits TEAD-mediated transcription in mice

2020 (ref. 179)

K-975 Covalent Pan-TEAD Covalently binds to a conserved cysteine in the TEAD PBP
Inhibits the YAP/TAZ–TEAD interaction and YAP–TEAD-regulated transcription
Inhibits growth of mesothelioma cells/tumours in vitro and in vivo
Synergistically suppresses mesothelioma tumour xenografts in combination with CDK4/6 
inhibitor (palbociclib)

2020 (ref. 180)

Compound 2 Non-covalent Pan-TEAD Binds to TEAD PBP, blocks TEAD palmitoylation and stabilizes TEAD protein in the absence 
of S-palmitoylation
Reduces CTGF and CYR61 transcription
Does not block TEAD binding to DNA
Causes tumour stasis in a mouse xenograft model

2020 (ref. 222)

MYF-01-037 Covalent TEAD2 Binds TEAD PBP and blocks YAP–TEAD interaction
Suppresses osimertinib + trametinib (OT)-induced YAP activity in vitro
Decreases dormant cell viability and growth in combination with OT

2020 (ref. 194)

VT103 Non-covalent TEAD1 Selectively binds TEAD1, blocks TEAD1 palmitoylation and disrupts YAP/TAZ–TEAD1 
interaction
Inhibits TEAD transcription activity
Inhibits proliferation of NF2-deficient mesothelioma cell lines in vitro and tumour  
growth in vivo

2021 (ref. 177)

VT107 Non-covalent Pan-TEAD Binds to and blocks palmitoylation of all four TEADs
Disrupts YAP/TAZ–TEAD interaction and transcription activity
Inhibits proliferation of NF2-deficient/Merlin-negative mesothelioma cell lines in vitro
Has broad efficacy in mesothelioma cell lines

2021 (ref. 177)

MSC-4106 Non-covalent TEAD1/3 Inhibits TEAD1 and TEAD3 palmitoylation
Crystallized in the P-site of TEAD1
Shows favourable PhysChem, ADME and pharmacokinetic profile
Reduces mesothelioma cell viability
in vitro and tumour growth in vivo
Downregulates CYR61 expression in tumours

2022 (ref. 181)

TM2 Non-covalent Pan-TEAD Binds to TEAD PBP and inhibits TEAD palmitoylation
Inhibits YAP–TEAD interaction and transcription
Blocks YAP-dependent organoid growth and cancer cell proliferation

2022 (ref. 263)

MYF-03-176 Covalent Pan-TEAD Binds to TEAD PBP
Inhibits YAP–TEAD-regulated transcription and proliferation of mesothelioma  
and liposarcoma cell lines

2023 (ref. 182)

GNE-7883 Non-covalent Pan-TEAD Binds TEAD PBP and disrupts YAP/TAZ–TEAD interaction
Decreases chromatin accessibility at TEAD motifs and expression of YAP/TAZ–TEAD  
target genes
Inhibits growth of YAP/TAZ-dependent cancer cell lines and mesothelioma tumour growth
Overcomes resistance to KRAS(G12C) inhibitors

2023 (ref. 139)

SWTX-143 Covalent Pan-TEAD Irreversible and selective
Binds to PBP of all four TEADs
Inhibits proliferation of hippo-mutated cancer cell lines and mesothelioma tumours in vivo
Inhibits YAP/TAZ–TEAD transcription in tumours

2024 (ref. 183)

AZ4331 Covalent Pan-TEAD Identified by structure-guided drug design for favourable DMPK, safety and CMC properties
Inhibits TEAD1–4 palmitoylation
Suppresses TEAD-dependent transcription and proliferation in mesothelioma and HNSCC
Shows combination effect with osimertinib in EGFR-mutant NSCLC CDX model

2024 (ref. 185)
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are dominated by agents that target the TEAD DNA binding proteins 
and their interaction with the YAP/TAZ transcription co-activators. 
The reasons for this are several fold: first, the Hippo pathway lacks 
readily targetable transmembrane receptors; second, most Hippo 
signalling proteins are tumour suppressors, not oncoproteins; third, 
both unbiased and directed drug discovery efforts identified agents 
that target the TEADs, as described below.

TEAD palmitate binding pocket inhibitors. A significant breakthrough 
in targeting the Hippo pathway was the discovery of a conserved hydro-
phobic palmitate binding pocket (PBP) in TEAD proteins170–172. All four 
mammalian TEAD family members contain a conserved cysteine resi-
due that undergoes autopalmitoylation, along with a highly conserved 
hydrophobic pocket where the palmitate is embedded, providing an 
ideal binding site for drug-like small molecules. Furthermore, auto-
palmitoylation influences the interaction of TEADs with the YAP and 
TAZ transcription co-activators and is required for TEADs to promote 
target gene transcription170–172. Thus, binding of a small molecule in 
this central lipid pocket was theorized to displace palmitate and pre-
vent autopalmitoylation of TEADs, resulting in a disruption of that 
ability of YAP/TAZ to bind to TEADs. Via both phenotypic screens (for 
example, cellular assays such as TEAD transcription reporter assays 
and TEAD palmitoylation assays) and structure-based design, many 
covalent and non-covalent TEAD autopalmitoylation inhibitors that 
bind to the central PBP have been reported (173–175 and references within; 
Table 2 and Fig. 3a). The four mammalian TEAD proteins are highly 
homologous. Thus far, the field has attempted to infer the relevance 
of the TEADs in cancer by examining their expression in cell lines and 
patient samples and via large-scale genetic screens performed as part 
of the Cancer Dependency Map176. However, because homologous 
genes can compensate for each other, genetic studies in which single 
genes are targeted have obvious challenges. As such, in the context 
of cancer therapy, it is still unclear whether one or more TEADs have 
greater functional relevance.

To date, more than 30 biotechnology and pharmaceutical com-
panies and academic laboratories have developed TEAD PBP inhibi-
tors (139,177–191). Table 2 and Fig. 3 present select examples of TEAD PBP 
inhibitors for which the chemical structures and biological activities 
have been published in peer-reviewed journals and/or conference 

presentations. In general, both covalent and non-covalent TEAD inhibi-
tors that display similar potency in TEAD transcription assays exhibit 
comparable in vitro anti-proliferation activity and in vivo antitumour 
efficacy in preclinical mesothelioma models177,183,191. However, it remains 
to be determined whether the different modes of action of TEAD 
PBP inhibitors (that is, irreversible inhibition of TEADs by a covalent 
cysteine PBP binder versus reversible inhibition of TEAD autopalmi-
toylation by a non-covalent binder) will influence the therapeutic index 
and durability of response in clinical settings. In addition to their mode 
of action, Table 2 highlights that not all TEAD PBP inhibitors target all 
four TEAD family members. For instance, certain inhibitors are selective 
for TEAD 1, 2 or 4 (refs. 177,178,192–194), whereas others are selective 
for pairs of TEADs, such as TEAD2 and TEAD4 (refs. 179,195) or TEAD1 
and TEAD3 (ref. 181). As described in more detail below, some TEAD 
PBP inhibitors have advanced into clinical trials, with the first-in-class 
VT3989 (Vivace Therapeutics) showing clinical responses (see below, 
NCT04665206 and refs. 196,197).

TEAD protein–protein interaction inhibitors. Before the discoveries of 
the central TEAD PBP and TEAD autopalmitoylation itself, efforts were 
made to identify small molecules or peptides that prevent YAP/TAZ 
interaction with TEADs (Fig. 3b). Verteporfin was the first reported 
YAP–TEAD PPI inhibitor198 and is commonly used as a tool compound 
in Hippo pathway research. However, owing to its mechanism of action 
as a photosensitizer, verteporfin activity is not specific. Detailed char-
acterization of the molecular interactions in the interface between 
YAP/TAZ and TEAD proteins199–201 and structure-based design paved 
the way for the discovery of specific YAP/TAZ–TEAD PPI inhibitors that  
work by binding to the α-helix or Ω-loop pockets on the surface of 
TEADs (173,174 and references within; for example,200,202–207). Select exam-
ples of non-peptide TEAD PPI inhibitors that have been published in 
peer-reviewed journals are presented in Table 3 and Fig. 3b. Currently, 
the most advanced YAP/TAZ–TEAD PPI inhibitor is IAG933 (Novartis).

Although both TEAD PBP inhibitors and YAP/TAZ–TEAD PPI inhibi-
tors suppress TEAD transcription activity by attenuating YAP/TAZ 
binding to TEAD, their mechanisms of action differ significantly. 
YAP/TAZ–TEAD PPI inhibitors, such as IAG933, directly bind to the 
TEAD Ω-loop pocket and competitively displace YAP/TAZ206. This 
action occurs regardless of the palmitoylation status of TEAD proteins.  

Compound Mode of action Reported TEAD 
selectivity

Comments Year (ref.)

MRK-A Non-covalent TEAD1 Selectively binds TEAD1 PBP and blocks the YAP–TEAD1 interaction
Blocks YAP–TEAD-regulated transcription
Reduces viability of Hippo pathway-altered mesothelioma cell lines in vitro and tumour 
growth in vivo
Resistance mediated by HGF–Met signalling

2024 (ref. 192)

M3686 Non-covalent TEAD1 Interacts strongly with TEAD1, weakly with TEAD3, but not TEAD2 or TEAD4
Inhibits TEAD palmitoylation and mesothelioma cell viability and tumour growth

2024 (ref. 193)

Compound 3 Covalent Pan-TEAD Inhibits palmitoylation of TEAD1,2,3,4 and YAP–TEAD-regulated transcription
Shows antitumour efficacy in mesothelioma model

2024 (ref. 191)

BPI-460372 Covalent TEAD1/3/4 Binds to TEAD1,3,4
Mainly metabolized by CYP2D6, CYP3A4 and CYP1A2

2025 (ref. 264)

TEA domain transcription factor (TEAD) palmitate binding pocket (PBP) inhibitors with known chemical structures are listed in chronological order based on their publication dates. The selected 
compounds represent various scaffolds, TEAD selectivity and modes of action. CDX, cell line-derived xenograft; DMPK, drug metabolism and pharmacokinetics; HNSCC, head and neck 
squamous cell carcinoma; NF2, neurofibromin 2 (Merlin); NSCLC, non-small-cell lung cancer; TAZ, transcriptional co-activator with PDZ binding motif; YAP, Yes-associated protein.

Table 2 (continued) | Select TEAD palmitate binding pocket inhibitors
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In contrast, TEAD PBP inhibitors (both covalent and non-covalent) 
indirectly disrupt the YAP/TAZ–TEAD interaction by allosterically 
modulating TEADs177,208. These inhibitors can bind to the central pocket 
of TEADs only when these proteins are not autopalmitoylated. When 
a TEAD inhibitor is first introduced to cells, there is almost certainly a 
pool of pre-existing autopalmitoylated TEAD proteins, which would 
be impervious to TEAD PBP inhibitors. As a result, YAP/TAZ–TEAD 
PPI inhibitors are likely to exert a faster and more profound initial 
inhibitory effect than TEAD PBP inhibitors. This concept has been 
substantiated by comparing IAG933 (ref. 206), VT104 (ref. 177) and 
K-975 (ref. 180) head to head in preclinical studies206. These contrasting 
mechanisms may influence both the clinical efficacy of different classes 
of TEAD inhibitor and their degree of on-target toxicity.

TEAD degraders. TEAD degraders (PROTACs) are another class of 
TEAD inhibitors that have been developed (174 and references within), 
and consist of a TEAD-binding moiety, a chemical linker and a ligand 
for the substrate recognition component of an E3 protein ligase com-
plex (for example, cereblon). To date, they have been designed based 
on either TEAD Ω-loop pocket binders209,210 or TEAD PBP binders211,212 
and recruit the ubiquitin–proteasome machinery to induce selective 
degradation of TEAD proteins. The development of this class of TEAD 
inhibitors remains challenging, but it will be of interest to see how TEAD 
degraders compare with TEAD PBP and PPI inhibitors, particularly in 
terms of both antitumour efficacy and toxicity.

Another important consideration in relation to the relative impact 
of TEAD degraders and TEAD small molecule inhibitors is the role of 
the VGLL4 transcription co-repressor (Tgi in Drosophila)213–215. VGLL4 
was originally identified in Drosophila as mediating a default repres-
sor function of Scalloped/TEADs and competes with YAP for over-
lapping binding sites on TEADs54,55. Specifically, while YAP interacts 
with TEADs at three distinct sites — interface 1 (a β-strand), interface 2  
(an α-helix) and interface 3 (an Ω-loop pocket) — VGLL4 binds only 
to interfaces 1 and 2, but not to the Ω-loop pocket139,215,216. As such, 
IAG933, an Ω-loop pocket binder, both prevents the YAP–TEAD PPI 
and promotes the VGLL4–TEAD PPI, as suggested by the finding that 
IAG933-treated mesothelioma cells exhibit an enrichment of VGLL4 
on TEAD genome binding sites at the expense of YAP206. This suggests 
that VGLL4–TEAD-mediated transcription repression may contribute 
significantly to the antitumour effects of IAG933. VGLL4 might also be 
important for TEAD PBP inhibitor efficacy; in support of this, an unbi-
ased genome-wide genetic screen identified VGLL4 as a gene conferring 
resistance to VT107, a pan-TEAD PBP inhibitor217. Interestingly, a group 
of sulfonamide-containing TEAD PBP inhibitors (namely, Compound 2, 
VT103 and IK-930) strongly promote TEAD–VGLL4 complex formation, 
whereas they only weakly impact the YAP–TEAD PPI (T.T.T., Mingyue 
Ma, Jian Li, and Fa-Xing Yu, unpublished data;184,218). In both in vitro 
and animal studies, these sulfonamide-containing TEAD PBP inhibi-
tors exhibited greater reliance on VGLL4 for cell killing and tumour 
reduction than non-sulfonamide-containing TEAD PBP inhibitors218. 
Given these findings, differential VGLL4 engagement by different 
classes of TEAD inhibitor may well impact their therapeutic index and 
toxicity. Further, TEAD PBP and PPI inhibitors might have superior anti-
tumour properties to TEAD degraders because the latter group of mol-
ecules will not be able to induce TEAD–VGLL4-mediated transcription  
repression, although this remains to be assessed.

A further predicted point of difference between TEAD PBP and 
PPI inhibitors, and TEAD degraders relates to the Hippo-independent 
transcription cofactors, VGLL1–3 and INSM1A/B. VGLL1–3, which are 

the orthologues of Drosophila Vestigial, and share homology with 
VGLL4, are co-activators of TEADs/Scalloped63–65, but are not regu-
lated by the Hippo pathway. INSM1A/B, which are the orthologues 
of Drosophila Nerfin-1, repress transcription in partnership with 
TEADs/Scalloped56,57. Theoretically, TEAD degraders would abolish 
not only YAP-mediated transcription, but transcription regulated by 
these additional TEAD cofactors. Whether TEAD PBP and PPI inhibi-
tors also influence TEAD-regulated transcription by VGLL1–3 and/or 
INSM1A/B awaits investigation, but it is likely that degradation-induced 
loss of TEAD occupancy will impact transcription differently from TEAD 
PBP and PPI inhibitors.

Hippo pathway mutations are driver events in several human 
cancers, and it is in these cancers that TEAD inhibitors are most likely 
to prove efficacious as monotherapies (for example, refer to cancers 
discussed in refs. 26,114). In preclinical studies, TEAD inhibitors have 
demonstrated the most promising antitumour efficacy as a monother-
apy in mesothelioma, highlighting the dependence of these tumours 
on YAP/TAZ–TEAD hyperactivity177,180,181,183,193,206. TEAD inhibitors have 
also displayed single-agent antitumour activity in preclinical models 
of EHE206,219, diffuse gastric cancer220, HCC221, HNSCC222,223, pancre-
atic ductal adenocarcinoma224, glioblastoma225, Schwannoma and 
meningioma226. Moreover, as discussed below, in a phase I clinical 
trial (clinicaltrials.gov ID: NCT04665206), the TEAD PBP inhibitor 
VT3989 demonstrated not only safety and tolerability but durable 
antitumour activity in patients with advanced mesothelioma196, and 
both VT3989 and IK-930 showed promising results, with patients with 
EHE experiencing stable disease on treatment196,227.

Table 3 | Select non-peptide YAP–TEAD protein–protein 
interaction inhibitors

PPI inhibitor Mode of 
action

Comments Year 
(ref.)

Compound 6 PPI — 
Ω-loop 
pocket  
of TEAD

Disrupts YAP–TEAD interaction in vitro
Inhibits YAP–TEAD-dependent 
transcription and cell proliferation

2022 
(ref. 203)

YTP-13 PPI — 
Ω-loop 
pocket  
of TEAD

Complexes with TEAD4
Suppresses YAP–TEAD-regulated 
transcription and mesothelioma 
tumours in mice

2023 
(ref. 205)

IAG933 PPI — 
Ω-loop 
pocket  
of TEAD

Binds to the Ω-loop binding region 
(one of three YAP-binding interfaces) 
of all four TEADs
Disrupts the YAP/TAZ–TEAD interaction
More rapid and deeper inhibition 
of TEAD-dependent transcription 
and cell viability
Induces loss of YAP and gain of VGLL4 
from TEAD genomic motifs
Shows rapid PD and antitumour 
efficacy in NF2-deficient and TAZ gene 
fusion cancer models
Improves antitumour efficacy of RTK, 
KRAS and RAF inhibitors in tumour 
models

2024 
(ref. 206)

Yes-associated protein (YAP)–TEA domain transcription factor (TEAD) protein–protein 
interaction (PPI) inhibitors that have been published in peer-reviewed journals. These 
compounds have similar chemical scaffolds to each other and bind to the Ω-loop pocket 
of TEADs. NF2, neurofibromin 2 (Merlin); PD, pharmacodynamics; TAZ, transcriptional 
co-activator with PDZ binding motif; VGLL4, Vestigial-like family member 4.
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Clinical trials in cancer. In exciting developments over the past few 
years, nine Hippo pathway-targeted therapies have entered human 
cancer clinical trials (Table 4). These trials have centred on cancers 
with a high incidence of genetic disruptions in the Hippo pathway 
(for example, NF2 mutations, oncogenic YAP/TAZ gene fusions, or 
YAP amplification). These cancers include mesothelioma, EHE, HCC, 
HNSCC and other advanced solid cancers. Seven of these therapies are 
TEAD PBP inhibitors, one is a YAP/TAZ–TEAD PPI inhibitor and one is 
RNA interference-based therapy (YAP ASO) (Table 4).

VT3989, a multi-TEAD PBP inhibitor, was the first-in-class and 
first-in-human TEAD inhibitor in clinical trials, and has shown com-
pelling clinical activity (NCT04665206)196. In a phase I, multi-centre, 
open-label, dose-escalation and expansion study, VT3989 was evalu-
ated in patients with refractory, locally advanced or metastatic solid 
tumours, particularly those with NF2 gene mutations or YAP or TAZ 
gene fusions. Data from an interim analysis were presented at the 2023 
American Association for Cancer Research Annual Meeting. Among 
69 enrolled patients, 43 had mesothelioma, nine had meningioma 
(four with germline NF2 mutations (gNF2m), four with somatic NF2 
mutations (sNF2m) and one without detectable NF2 mutations), four 
had sNF2m sarcoma, two had EHE and 11 had other solid tumours with 
or without sNF2m. VT3989 showed durable antitumour activity; six 
patients with mesothelioma achieved partial responses with target 
lesion changes ranging from −30% to −81% and treatment durations 
of 6.5+ to 21+ months, and one patient with sNF2m sarcoma achieved a 
partial response (−35%; treatment duration of 8 months). Additionally, 
among those with measurable disease and at least one post-treatment 
tumour assessment, 34 patients achieved stable disease, with notable 
cases including a patient with sNF2m nasopharyngeal cancer (−24% 
change, 7.4 months) and a patient with EHE (−22%, 9.5+ months). 

Treatment was ongoing at the time of data cut-off for the interim analy-
sis. Importantly, VT3989 is safe and well tolerated, with no dose-limiting 
toxicities observed. The most common treatment-related adverse 
events were albuminuria and proteinuria, which were reversible at all 
doses and schedules197. Excitingly, the clinical activity of VT3989 not 
only demonstrates the druggability of the Hippo pathway but also 
validates it as a viable target for cancer therapy and underscores its 
potential for continued drug development.

The second TEAD inhibitor to enter clinical trials was IAG933 
(Novartis). It is the only TEAD PPI inhibitor in clinical trials to date and 
is being evaluated in a phase I study for advanced mesothelioma and 
other solid tumours (NCT04857372; Table 4). Clinical data for IAG933 
have yet to be disclosed, but it will be fascinating to compare its clinical 
impact with that of the TEAD PBP inhibitors. The phase I study of IK-930, 
a TEAD1-selective PBP inhibitor, was terminated for strategic reasons by 
the sponsor228 (Table 4). Before discontinuation, IK-930 showed early 
signs of clinical benefit in EHE, with seven of seven patients achieving 
stable disease. However, contrary to preclinical data that suggested 
the TEAD1-selective PBP inhibitor would have a superior safety pro-
file, with no evidence of renal changes compared with pan-TEAD PBP 
inhibitors184, proteinuria was observed in the initial dose-escalation 
cohort of IK-930 (ref. 227). Interestingly, VT103, a TEAD1-selective 
PBP inhibitor that is tenfold and 75-fold more potent than IK-930 in 
YAP reporter assays in vitro and in NCI-H226 tumour xenograft studies  
in vivo, respectively, exhibited renal toxicity in 28-day rat studies177,229. 
These findings indicate that TEAD1 has an important role in podocyte 
function (see below). ION537 is the only YAP-specific targeted therapy 
using ASOs that has been evaluated in clinical trials to date. Although 
the trial was completed, clinical response and safety data have not yet 
been reported. As we await further updates from ongoing clinical trials 

Table 4 | YAP–TEAD-targeting drugs in cancer clinical trials

Drug Sponsor Mode of action TEAD selectivity Clinical trial

ION537a Ionis Pharmaceuticals YAP1 antisense oligonucleotides NA NCT04659096
Phase I, study start 5 Jan 2021

VT3989 Vivace Therapeutics Non-covalent
Autopalmitoylation inhibitor

TEAD1,(2),3,(4) NCT04665206
Phase I and phase II, study start  
24 Mar 2021

IAG933 Novartis Pharmaceuticals YAP/TAZ–TEAD PPI inhibitor Pan-TEAD NCT04857372
Phase I, study start 21 Oct 2021

IK-930b Ikena Oncology Non-covalent
Autopalmitoylation inhibitor

TEAD1 NCT05228015
Phase I, study start 7 Jan 2022

BPI-460372 Betta Pharmaceuticals Covalent
Autopalmitoylation inhibitor

TEAD1,3,4 NCT05789602
Phase I, study start 24 Apr 2023

ODM-212c Orion Pharma Non-covalent
Autopalmitoylation inhibitor

Unknown ISRCTN99739590
Phase I/2, study start 25 Oct 2023

BGC515 BridGene Biosciences Covalent
Autopalmitoylation inhibitor

Pan-TEAD NCT06452160
Phase I, study start 27 Jun 2024

SW-682 SpringWorks Therapeutics Autopalmitoylation inhibitor Pan-TEAD NCT06251310
Phase I, study start 30 Jul 2024

ISM6331 Insilico Medicine Non-covalent
Autopalmitoylation inhibitor

Pan-TEAD NCT06566079
Phase I, study start 27 Dec 2024

Drugs targeting Yes-associated protein (YAP) or TEA domain transcription factor (TEAD) in cancer clinical trials are listed in chronological order based on the start dates of their phase I studies. 
More detailed information on the trials can be found on ClinicalTrials.gov or the UK’s Clinical Study Registry (ISRCTN) using the trial IDs shown in the last column. aThe study was completed on 
19 Oct 2022. bIkena Oncology announced discontinuation of the clinical IK-930 programme (press release 28 May 2024)228. cFirst posted on ClinicalTrials.gov on 10 Dec 2024 (NCT06725758). 
NA, not applicable; TAZ, transcriptional co-activator with PDZ binding motif.
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(Table 4), additional TEAD inhibitors including SPR1 (a non-covalent 
TEAD1/TEAD4 PBP inhibitor; Sporos Biodiscovery) and OPN-9840  
(a non-covalent pan-TEAD PBP inhibitor; Opna Bio) are being developed 
and are currently in the IND-enabling stages, meaning that further 
trials are imminent.

Potential limitations of TEAD inhibitors. Given that TEAD transcrip-
tion factors are broadly expressed and essential for both animal devel-
opment and homeostasis, the deployment of agents that inhibit their 
functions could theoretically pose substantial risks. YAP and TEADs are 
essential for murine embryonic development; they regulate the very 
first cell fate choice in pre-implantation embryos, that is, trophecto-
derm versus inner cell mass24, and subsequently control cell competi-
tion in the epiblast230. Accordingly, targeted disruption of various TEAD 
genes in mice causes embryonic lethality231,232. This occurs at different 
stages of embryonic development and, coupled with the fact that 
expression of the four TEAD genes is to some degree non-overlapping, 
suggests that they have both overlapping and tissue-specific roles231–235. 
As TEAD transcription factors and the Hippo signalling pathway are 
highly evolutionarily conserved, inhibition of TEADs would be pre-
dicted to have similar deleterious consequences for human embry-
onic development. Thus, one may anticipate TEAD inhibitors to affect 
fertility, embryo–fetal development, and pre- and postnatal develop-
ment. However, it is important to note that gene mutations and small 
molecule inhibitors perturb biological systems in very different ways, 
and to date the possibility of reproductive toxicity is theoretical with 
no evidence.

Genetically engineered inducible mouse models have enabled 
the investigation of YAP, TAZ and the TEAD genes beyond embryonic 
development. These have revealed that while YAP and TAZ are largely 
dispensable in many tissues (for example, epithelial cells in the intes-
tinal epithelium and hepatocytes in the liver) they are essential for 
epithelial tissue regeneration after injury, and in certain cell types 
(for example, the skin and biliary ducts of the liver) (236 and references 
within). Of note, several reports revealed that YAP and TAZ have an 
essential role in kidney development and podocyte homeostasis237–239. 

Podocytes are specialized epithelial cells that have long foot processes 
that wrap around the capillaries of the glomerulus in the kidney, and are 
crucial to filter blood plasma and maintain the structural integrity of 
the glomerulus240. Glomerular diseases including Diabetic Nephropa-
thy and Focal Segmental Glomerulosclerosis (FSGS) are characterized 
by podocyte loss, which results in proteinuria and significant loss of 
albumin in the urine. It is important to note that mouse models of 
FSGS, in which YAP or TAZ was deleted specifically in the podocytes 
congenitally with a non-inducible podocin promoter-driven Cre, is 
different from inhibition of TEAD in adults with systemic exposure 
of TEAD inhibitors. Bypassing the requirement of YAP/TAZ during 
podocyte development, inducible podocyte-specific deletion of YAP 
or TAZ in adult mice enables normal kidney function with no sign of 
proteinuria241,242. Podocyte-specific deletion of YAP/TAZ in adult mice 
resulted in exacerbated kidney function only when mice were also 
administered with podocyte-damaging agents241–244.

Concerns about kidney toxicity emerged when preclinical safety 
studies in rats and monkeys revealed pathological findings at high 
TEAD inhibitor doses suggestive of renal toxicity245,246. Despite preclini-
cal evidence indicating that podocytes depend on YAP/TAZ signalling 
in response to damage, early clinical trials of the Vivace TEAD inhibitor 
VT3989 showed that it is well tolerated and safe. In addition, several 
cancer patients experienced durable partial responses or stable dis-
ease (see Clinical trials above)196. Although some patients developed 
proteinuria during treatment with VT3989, it was reversible upon 
treatment interruption. Importantly, this proteinuria has not been 
associated with clinically meaningful renal insufficiency or hypoal-
buminaemia. Similarly, nephrotoxicity induced by the covalent TEAD 
inhibitor K-975 in rats was reversible and monitorable247. Although the 
proteinuric effect of TEAD inhibitors raises concerns about poten-
tial glomerular injury and scarring with long-term use — especially in 
patients with pre-existing proteinuria — strategies to mitigate this risk, 
such as intermittent dosing schedules, could allow for effective treat-
ment while minimizing proteinuria-related toxicity. In summary, the 
only toxicity seen so far is proteinuria, consistent with what has been 
seen in preclinical species and the literature about the role of TEADs in 

Box 2 | Hippo and RAS–MAPK: a relationship to be leveraged
 

The Hippo and RAS–MAPK pathways are both core signal 
transduction cascades that are implicated in tissue growth, cell 
differentiation and cancer. The RAS–MAPK pathway was pieced 
together using biochemistry and genetics in the 1980s and 1990s265. 
The discovery and characterization of the Hippo pathway happened 
much later, with most of the pathway assembled in the 2000s and 
2010s, with Drosophila genetics taking the lead1–9. Fascinatingly, 
close functional relationships between these pathways have been 
identified time and again, predominantly in unbiased genetic screens 
in human cultured cells, but also in vivo. In 2014, Yes-associated 
protein (YAP) was found to possess the ability to supplant the 
oncogenic function of KRAS in both human cultured cells and 
mice136,137. At a similar time, again in unbiased genetic screens, 
YAP conferred resistance to the RAS–MAPK-targeted therapies 
BRAF inhibitor and MEK inhibitor in different cancer cell lines138. 
Subsequently, this role for YAP was extended to additional RAS–MAPK 
pathway-targeted therapies138,139,194,226,252–255,257,266, and, more recently, 

elevated RAS–MAPK pathway activity was identified as conferring 
resistance to TEA domain transcription factor (TEAD) inhibitors in 
mesothelioma217,250. Consistently, combining TEAD inhibitors with 
RAS–MAPK-targeted therapies has proved beneficial in multiple 
preclinical tumour models of both Hippo-driven and RAS-driven 
cancers139,140,206,217,250,256–262. The precise mechanisms by which these 
pathways crosstalk are still being elucidated but multiple studies 
have revealed links between each pathway’s transcription factors, 
that is, YAP–TEAD and the AP-1 family proteins. These proteins 
coregulate many genes in both cancer cell lines and in vivo in 
Drosophila and regulate cancer cell survival and tissue growth47,267–271. 
Protein–protein interactions between these transcription factors 
have also been reported, as well as the ability to impact each other’s 
abundance47,270. This wealth of evidence indicates great potential  
to combine Hippo pathway and RAS–MAPK pathway inhibitors as 
cancer therapies.
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glomeruli. Ultimately, identification of TEAD inhibitors with the most 
favourable therapeutic index and durable responses remains crucial.

In addition to on-target toxicity, most cancer therapies are also 
limited by acquired or intrinsic resistance. In preclinical studies, sev-
eral resistance mechanisms to TEAD inhibitors have already been 
identified, including activation of the RAS–MAPK, JAK–STAT and 
PI3K–AKT pathways, as well as MYC signalling192,217,248–250. Further, a 
recent study reported that elevation of cellular acyl-CoA levels (includ-
ing palmitoyl-CoA) could confer some degree of resistance to multiple 
TEAD PBPs251. As more TEAD inhibitors continue to undergo evaluation 
in clinical trials, it will be important to monitor the emergence of resist-
ance in patients. Gaining insight into the mechanisms of resistance will 
be essential to develop strategies to overcome it.

Combination therapies. Many studies have revealed a special relation-
ship between the Hippo and RAS–MAPK signalling pathways in both 
development and disease (Box 2). For example, YAP/TAZ–TEAD activa-
tion can drive resistance to multiple RAS–MAPK pathway-targeted can-
cer therapies, including EGFR, BRAF, ALK and RAS inhibitors138,194,252–255. 
Preclinical studies have revealed that TEAD inhibitors enhance the effi-
cacy and durability of the response to many of these targeted therapies, 
including clinically approved EGFR inhibitors (osimertinib, lazertinib), 
MET inhibitors (savolitinib, capmatinib), EGFR–MET bispecific anti-
body (amivantamab), KRAS(G12C) inhibitors (sotorasib, adagrasib), 
BRAF inhibitors (encorafenib, dabrafenib), MEK inhibitors (trametinib, 
cobimetinib) and mTOR inhibitor (everolimus)139,140,206,217,256–262. Further-
more, various RAS–MAPK pathway inhibitors such as trametinib and 
cobimetinib were recently found to enhance the antitumour properties 
of TEAD inhibitors such as VT107 and IAG933 in both mesothelioma 
and non-small-cell lung cancer206,217. Although preclinical evidence 
strongly supports combination of TEAD inhibitors with other targeted 
therapies, the translation of this into clinical outcomes remains to be 
seen, pending clinical trial data. It is still early days for TEAD inhibitors 
in the clinic but combining them with RAS–MAPK pathway therapies 
could significantly expand the application of TEAD inhibitors in cancer 
treatment, particularly as Hippo pathway-driven cancers are far rarer 
than RAS–MAPK pathway-driven cancers.

Outlook
Just under 20 years elapsed between the discovery of the Hippo pathway 
in Drosophila as a new growth-control signalling network and the entry 
of Hippo-targeted therapies into cancer clinical trials. This stands as 
yet another powerful example of how discovery research can reveal 
truly novel potential ways to treat human diseases. Interestingly, most 
drug discovery efforts from dozens of academic and industry groups 
have landed on the same targets, the TEAD transcription factors. Com-
pounds that disrupt the ability of these proteins to form stable com-
plexes with the YAP and TAZ transcription co-activators have shown 
great potential as anticancer therapies in preclinical studies and more 
recently in a phase I clinical trial. Further clinical trial results are eagerly 
awaited and will ultimately determine the efficacy of TEAD inhibitors 
both when administered as monotherapies in Hippo-driven cancers 
such as mesothelioma, and in combination with agents that target the 
RAS–MAPK pathway in cancers driven by this pathway. If successful, 
TEAD inhibitors will give added impetus to transcription factor target-
ing in medicine, as well as pursuit of compounds that target additional 
Hippo pathway proteins such as the MARK and NUAK kinases.

Published online: xx xx xxxx
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